MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreriincl Structured version   Visualization version   Unicode version

Theorem mreriincl 16258
Description: The relative intersection of a family of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
mreriincl  |-  ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  ->  ( X  i^i  |^|_ y  e.  I  S )  e.  C
)
Distinct variable groups:    y, I    y, X    y, C
Allowed substitution hint:    S( y)

Proof of Theorem mreriincl
StepHypRef Expression
1 riin0 4594 . . . 4  |-  ( I  =  (/)  ->  ( X  i^i  |^|_ y  e.  I  S )  =  X )
21adantl 482 . . 3  |-  ( ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  /\  I  =  (/) )  ->  ( X  i^i  |^|_ y  e.  I  S )  =  X )
3 mre1cl 16254 . . . 4  |-  ( C  e.  (Moore `  X
)  ->  X  e.  C )
43ad2antrr 762 . . 3  |-  ( ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  /\  I  =  (/) )  ->  X  e.  C )
52, 4eqeltrd 2701 . 2  |-  ( ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  /\  I  =  (/) )  ->  ( X  i^i  |^|_ y  e.  I  S )  e.  C
)
6 mress 16253 . . . . . . 7  |-  ( ( C  e.  (Moore `  X )  /\  S  e.  C )  ->  S  C_  X )
76ex 450 . . . . . 6  |-  ( C  e.  (Moore `  X
)  ->  ( S  e.  C  ->  S  C_  X ) )
87ralimdv 2963 . . . . 5  |-  ( C  e.  (Moore `  X
)  ->  ( A. y  e.  I  S  e.  C  ->  A. y  e.  I  S  C_  X
) )
98imp 445 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  ->  A. y  e.  I  S  C_  X
)
10 riinn0 4595 . . . 4  |-  ( ( A. y  e.  I  S  C_  X  /\  I  =/=  (/) )  ->  ( X  i^i  |^|_ y  e.  I  S )  =  |^|_ y  e.  I  S
)
119, 10sylan 488 . . 3  |-  ( ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  /\  I  =/=  (/) )  ->  ( X  i^i  |^|_ y  e.  I  S )  =  |^|_ y  e.  I  S
)
12 simpll 790 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  /\  I  =/=  (/) )  ->  C  e.  (Moore `  X )
)
13 simpr 477 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  /\  I  =/=  (/) )  ->  I  =/=  (/) )
14 simplr 792 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  /\  I  =/=  (/) )  ->  A. y  e.  I  S  e.  C )
15 mreiincl 16256 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  I  =/=  (/)  /\  A. y  e.  I  S  e.  C )  ->  |^|_ y  e.  I  S  e.  C )
1612, 13, 14, 15syl3anc 1326 . . 3  |-  ( ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  /\  I  =/=  (/) )  ->  |^|_ y  e.  I  S  e.  C )
1711, 16eqeltrd 2701 . 2  |-  ( ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  /\  I  =/=  (/) )  ->  ( X  i^i  |^|_ y  e.  I  S )  e.  C
)
185, 17pm2.61dane 2881 1  |-  ( ( C  e.  (Moore `  X )  /\  A. y  e.  I  S  e.  C )  ->  ( X  i^i  |^|_ y  e.  I  S )  e.  C
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    i^i cin 3573    C_ wss 3574   (/)c0 3915   |^|_ciin 4521   ` cfv 5888  Moorecmre 16242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-mre 16246
This theorem is referenced by:  acsfn1  16322  acsfn1c  16323  acsfn2  16324  acsfn1p  37769
  Copyright terms: Public domain W3C validator