Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngo2 Structured version   Visualization version   Unicode version

Theorem rngo2 33706
Description: A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringi.1  |-  G  =  ( 1st `  R
)
ringi.2  |-  H  =  ( 2nd `  R
)
ringi.3  |-  X  =  ran  G
Assertion
Ref Expression
rngo2  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  E. x  e.  X  ( A G A )  =  ( ( x G x ) H A ) )
Distinct variable groups:    x, G    x, H    x, X    x, A    x, R

Proof of Theorem rngo2
StepHypRef Expression
1 ringi.1 . . 3  |-  G  =  ( 1st `  R
)
2 ringi.2 . . 3  |-  H  =  ( 2nd `  R
)
3 ringi.3 . . 3  |-  X  =  ran  G
41, 2, 3rngoid 33701 . 2  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  E. x  e.  X  ( (
x H A )  =  A  /\  ( A H x )  =  A ) )
5 oveq12 6659 . . . . . . 7  |-  ( ( ( x H A )  =  A  /\  ( x H A )  =  A )  ->  ( ( x H A ) G ( x H A ) )  =  ( A G A ) )
65anidms 677 . . . . . 6  |-  ( ( x H A )  =  A  ->  (
( x H A ) G ( x H A ) )  =  ( A G A ) )
76eqcomd 2628 . . . . 5  |-  ( ( x H A )  =  A  ->  ( A G A )  =  ( ( x H A ) G ( x H A ) ) )
8 simpll 790 . . . . . . 7  |-  ( ( ( R  e.  RingOps  /\  A  e.  X )  /\  x  e.  X
)  ->  R  e.  RingOps )
9 simpr 477 . . . . . . 7  |-  ( ( ( R  e.  RingOps  /\  A  e.  X )  /\  x  e.  X
)  ->  x  e.  X )
10 simplr 792 . . . . . . 7  |-  ( ( ( R  e.  RingOps  /\  A  e.  X )  /\  x  e.  X
)  ->  A  e.  X )
111, 2, 3rngodir 33704 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  (
x  e.  X  /\  x  e.  X  /\  A  e.  X )
)  ->  ( (
x G x ) H A )  =  ( ( x H A ) G ( x H A ) ) )
128, 9, 9, 10, 11syl13anc 1328 . . . . . 6  |-  ( ( ( R  e.  RingOps  /\  A  e.  X )  /\  x  e.  X
)  ->  ( (
x G x ) H A )  =  ( ( x H A ) G ( x H A ) ) )
1312eqeq2d 2632 . . . . 5  |-  ( ( ( R  e.  RingOps  /\  A  e.  X )  /\  x  e.  X
)  ->  ( ( A G A )  =  ( ( x G x ) H A )  <->  ( A G A )  =  ( ( x H A ) G ( x H A ) ) ) )
147, 13syl5ibr 236 . . . 4  |-  ( ( ( R  e.  RingOps  /\  A  e.  X )  /\  x  e.  X
)  ->  ( (
x H A )  =  A  ->  ( A G A )  =  ( ( x G x ) H A ) ) )
1514adantrd 484 . . 3  |-  ( ( ( R  e.  RingOps  /\  A  e.  X )  /\  x  e.  X
)  ->  ( (
( x H A )  =  A  /\  ( A H x )  =  A )  -> 
( A G A )  =  ( ( x G x ) H A ) ) )
1615reximdva 3017 . 2  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( E. x  e.  X  ( ( x H A )  =  A  /\  ( A H x )  =  A )  ->  E. x  e.  X  ( A G A )  =  ( ( x G x ) H A ) ) )
174, 16mpd 15 1  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  E. x  e.  X  ( A G A )  =  ( ( x G x ) H A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   ran crn 5115   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   RingOpscrngo 33693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-1st 7168  df-2nd 7169  df-rngo 33694
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator