Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoid Structured version   Visualization version   Unicode version

Theorem rngoid 33701
Description: The multiplication operation of a unital ring has (one or more) identity elements. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringi.1  |-  G  =  ( 1st `  R
)
ringi.2  |-  H  =  ( 2nd `  R
)
ringi.3  |-  X  =  ran  G
Assertion
Ref Expression
rngoid  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  E. u  e.  X  ( (
u H A )  =  A  /\  ( A H u )  =  A ) )
Distinct variable groups:    u, G    u, H    u, X    u, A    u, R

Proof of Theorem rngoid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringi.1 . . . . 5  |-  G  =  ( 1st `  R
)
2 ringi.2 . . . . 5  |-  H  =  ( 2nd `  R
)
3 ringi.3 . . . . 5  |-  X  =  ran  G
41, 2, 3rngoi 33698 . . . 4  |-  ( R  e.  RingOps  ->  ( ( G  e.  AbelOp  /\  H :
( X  X.  X
) --> X )  /\  ( A. u  e.  X  A. x  e.  X  A. y  e.  X  ( ( ( u H x ) H y )  =  ( u H ( x H y ) )  /\  ( u H ( x G y ) )  =  ( ( u H x ) G ( u H y ) )  /\  ( ( u G x ) H y )  =  ( ( u H y ) G ( x H y ) ) )  /\  E. u  e.  X  A. x  e.  X  ( (
u H x )  =  x  /\  (
x H u )  =  x ) ) ) )
54simprrd 797 . . 3  |-  ( R  e.  RingOps  ->  E. u  e.  X  A. x  e.  X  ( ( u H x )  =  x  /\  ( x H u )  =  x ) )
6 r19.12 3063 . . 3  |-  ( E. u  e.  X  A. x  e.  X  (
( u H x )  =  x  /\  ( x H u )  =  x )  ->  A. x  e.  X  E. u  e.  X  ( ( u H x )  =  x  /\  ( x H u )  =  x ) )
75, 6syl 17 . 2  |-  ( R  e.  RingOps  ->  A. x  e.  X  E. u  e.  X  ( ( u H x )  =  x  /\  ( x H u )  =  x ) )
8 oveq2 6658 . . . . . 6  |-  ( x  =  A  ->  (
u H x )  =  ( u H A ) )
9 id 22 . . . . . 6  |-  ( x  =  A  ->  x  =  A )
108, 9eqeq12d 2637 . . . . 5  |-  ( x  =  A  ->  (
( u H x )  =  x  <->  ( u H A )  =  A ) )
11 oveq1 6657 . . . . . 6  |-  ( x  =  A  ->  (
x H u )  =  ( A H u ) )
1211, 9eqeq12d 2637 . . . . 5  |-  ( x  =  A  ->  (
( x H u )  =  x  <->  ( A H u )  =  A ) )
1310, 12anbi12d 747 . . . 4  |-  ( x  =  A  ->  (
( ( u H x )  =  x  /\  ( x H u )  =  x )  <->  ( ( u H A )  =  A  /\  ( A H u )  =  A ) ) )
1413rexbidv 3052 . . 3  |-  ( x  =  A  ->  ( E. u  e.  X  ( ( u H x )  =  x  /\  ( x H u )  =  x )  <->  E. u  e.  X  ( ( u H A )  =  A  /\  ( A H u )  =  A ) ) )
1514rspccva 3308 . 2  |-  ( ( A. x  e.  X  E. u  e.  X  ( ( u H x )  =  x  /\  ( x H u )  =  x )  /\  A  e.  X )  ->  E. u  e.  X  ( (
u H A )  =  A  /\  ( A H u )  =  A ) )
167, 15sylan 488 1  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  E. u  e.  X  ( (
u H A )  =  A  /\  ( A H u )  =  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    X. cxp 5112   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   AbelOpcablo 27398   RingOpscrngo 33693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-1st 7168  df-2nd 7169  df-rngo 33694
This theorem is referenced by:  rngo2  33706
  Copyright terms: Public domain W3C validator