Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngohomf Structured version   Visualization version   Unicode version

Theorem rngohomf 33765
Description: A ring homomorphism is a function. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
rnghomf.1  |-  G  =  ( 1st `  R
)
rnghomf.2  |-  X  =  ran  G
rnghomf.3  |-  J  =  ( 1st `  S
)
rnghomf.4  |-  Y  =  ran  J
Assertion
Ref Expression
rngohomf  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  F : X
--> Y )

Proof of Theorem rngohomf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnghomf.1 . . . . 5  |-  G  =  ( 1st `  R
)
2 eqid 2622 . . . . 5  |-  ( 2nd `  R )  =  ( 2nd `  R )
3 rnghomf.2 . . . . 5  |-  X  =  ran  G
4 eqid 2622 . . . . 5  |-  (GId `  ( 2nd `  R ) )  =  (GId `  ( 2nd `  R ) )
5 rnghomf.3 . . . . 5  |-  J  =  ( 1st `  S
)
6 eqid 2622 . . . . 5  |-  ( 2nd `  S )  =  ( 2nd `  S )
7 rnghomf.4 . . . . 5  |-  Y  =  ran  J
8 eqid 2622 . . . . 5  |-  (GId `  ( 2nd `  S ) )  =  (GId `  ( 2nd `  S ) )
91, 2, 3, 4, 5, 6, 7, 8isrngohom 33764 . . . 4  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps )  ->  ( F  e.  ( R  RngHom  S )  <->  ( F : X --> Y  /\  ( F `  (GId `  ( 2nd `  R ) ) )  =  (GId `  ( 2nd `  S ) )  /\  A. x  e.  X  A. y  e.  X  ( ( F `  ( x G y ) )  =  ( ( F `
 x ) J ( F `  y
) )  /\  ( F `  ( x
( 2nd `  R
) y ) )  =  ( ( F `
 x ) ( 2nd `  S ) ( F `  y
) ) ) ) ) )
109biimpa 501 . . 3  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps )  /\  F  e.  ( R  RngHom  S ) )  -> 
( F : X --> Y  /\  ( F `  (GId `  ( 2nd `  R
) ) )  =  (GId `  ( 2nd `  S ) )  /\  A. x  e.  X  A. y  e.  X  (
( F `  (
x G y ) )  =  ( ( F `  x ) J ( F `  y ) )  /\  ( F `  ( x ( 2nd `  R
) y ) )  =  ( ( F `
 x ) ( 2nd `  S ) ( F `  y
) ) ) ) )
1110simp1d 1073 . 2  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps )  /\  F  e.  ( R  RngHom  S ) )  ->  F : X --> Y )
12113impa 1259 1  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  F : X
--> Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167  GIdcgi 27344   RingOpscrngo 33693    RngHom crnghom 33759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-rngohom 33762
This theorem is referenced by:  rngohomcl  33766  rngogrphom  33770  rngohomco  33773  keridl  33831
  Copyright terms: Public domain W3C validator