| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoidmlem | Structured version Visualization version Unicode version | ||
| Description: The unit of a ring is an identity element for the multiplication. (Contributed by FL, 18-Feb-2010.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| uridm.1 |
|
| uridm.2 |
|
| uridm.3 |
|
| Ref | Expression |
|---|---|
| rngoidmlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uridm.1 |
. . . . 5
| |
| 2 | 1 | rngomndo 33734 |
. . . 4
|
| 3 | mndomgmid 33670 |
. . . 4
| |
| 4 | eqid 2622 |
. . . . . 6
| |
| 5 | uridm.3 |
. . . . . 6
| |
| 6 | 4, 5 | cmpidelt 33658 |
. . . . 5
|
| 7 | 6 | ex 450 |
. . . 4
|
| 8 | 2, 3, 7 | 3syl 18 |
. . 3
|
| 9 | eqid 2622 |
. . . . 5
| |
| 10 | 1, 9 | rngorn1eq 33733 |
. . . 4
|
| 11 | uridm.2 |
. . . . 5
| |
| 12 | eqtr 2641 |
. . . . . 6
| |
| 13 | simpl 473 |
. . . . . . . . 9
| |
| 14 | 13 | eleq2d 2687 |
. . . . . . . 8
|
| 15 | 14 | imbi1d 331 |
. . . . . . 7
|
| 16 | 15 | ex 450 |
. . . . . 6
|
| 17 | 12, 16 | syl 17 |
. . . . 5
|
| 18 | 11, 17 | mpan 706 |
. . . 4
|
| 19 | 10, 18 | mpcom 38 |
. . 3
|
| 20 | 8, 19 | mpbird 247 |
. 2
|
| 21 | 20 | imp 445 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fo 5894 df-fv 5896 df-riota 6611 df-ov 6653 df-1st 7168 df-2nd 7169 df-grpo 27347 df-gid 27348 df-ablo 27399 df-ass 33642 df-exid 33644 df-mgmOLD 33648 df-sgrOLD 33660 df-mndo 33666 df-rngo 33694 |
| This theorem is referenced by: rngolidm 33736 rngoridm 33737 |
| Copyright terms: Public domain | W3C validator |