MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restutop Structured version   Visualization version   Unicode version

Theorem restutop 22041
Description: Restriction of a topology induced by an uniform structure. (Contributed by Thierry Arnoux, 12-Dec-2017.)
Assertion
Ref Expression
restutop  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  (
(unifTop `  U )t  A ) 
C_  (unifTop `  ( Ut  ( A  X.  A ) ) ) )

Proof of Theorem restutop
Dummy variables  a 
b  u  v  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . 4  |-  ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  b  e.  ( (unifTop `  U
)t 
A ) )  -> 
( U  e.  (UnifOn `  X )  /\  A  C_  X ) )
2 fvexd 6203 . . . . . . 7  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  (unifTop `  U )  e.  _V )
3 elfvex 6221 . . . . . . . . 9  |-  ( U  e.  (UnifOn `  X
)  ->  X  e.  _V )
43adantr 481 . . . . . . . 8  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  X  e.  _V )
5 simpr 477 . . . . . . . 8  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  A  C_  X )
64, 5ssexd 4805 . . . . . . 7  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  A  e.  _V )
7 elrest 16088 . . . . . . 7  |-  ( ( (unifTop `  U )  e.  _V  /\  A  e. 
_V )  ->  (
b  e.  ( (unifTop `  U )t  A )  <->  E. a  e.  (unifTop `  U )
b  =  ( a  i^i  A ) ) )
82, 6, 7syl2anc 693 . . . . . 6  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  (
b  e.  ( (unifTop `  U )t  A )  <->  E. a  e.  (unifTop `  U )
b  =  ( a  i^i  A ) ) )
98biimpa 501 . . . . 5  |-  ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  b  e.  ( (unifTop `  U
)t 
A ) )  ->  E. a  e.  (unifTop `  U ) b  =  ( a  i^i  A
) )
10 inss2 3834 . . . . . . 7  |-  ( a  i^i  A )  C_  A
11 sseq1 3626 . . . . . . 7  |-  ( b  =  ( a  i^i 
A )  ->  (
b  C_  A  <->  ( a  i^i  A )  C_  A
) )
1210, 11mpbiri 248 . . . . . 6  |-  ( b  =  ( a  i^i 
A )  ->  b  C_  A )
1312rexlimivw 3029 . . . . 5  |-  ( E. a  e.  (unifTop `  U
) b  =  ( a  i^i  A )  ->  b  C_  A
)
149, 13syl 17 . . . 4  |-  ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  b  e.  ( (unifTop `  U
)t 
A ) )  -> 
b  C_  A )
15 simp-5l 808 . . . . . . . . . 10  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  b  e.  ( (unifTop `  U
)t 
A ) )  /\  x  e.  b )  /\  a  e.  (unifTop `  U ) )  /\  b  =  ( a  i^i  A ) )  ->  U  e.  (UnifOn `  X
) )
1615ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  b  e.  ( (unifTop `  U )t  A
) )  /\  x  e.  b )  /\  a  e.  (unifTop `  U )
)  /\  b  =  ( a  i^i  A
) )  /\  u  e.  U )  /\  (
u " { x } )  C_  a
)  ->  U  e.  (UnifOn `  X ) )
176ad6antr 772 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  b  e.  ( (unifTop `  U )t  A
) )  /\  x  e.  b )  /\  a  e.  (unifTop `  U )
)  /\  b  =  ( a  i^i  A
) )  /\  u  e.  U )  /\  (
u " { x } )  C_  a
)  ->  A  e.  _V )
18 xpexg 6960 . . . . . . . . . 10  |-  ( ( A  e.  _V  /\  A  e.  _V )  ->  ( A  X.  A
)  e.  _V )
1917, 17, 18syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  b  e.  ( (unifTop `  U )t  A
) )  /\  x  e.  b )  /\  a  e.  (unifTop `  U )
)  /\  b  =  ( a  i^i  A
) )  /\  u  e.  U )  /\  (
u " { x } )  C_  a
)  ->  ( A  X.  A )  e.  _V )
20 simplr 792 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  b  e.  ( (unifTop `  U )t  A
) )  /\  x  e.  b )  /\  a  e.  (unifTop `  U )
)  /\  b  =  ( a  i^i  A
) )  /\  u  e.  U )  /\  (
u " { x } )  C_  a
)  ->  u  e.  U )
21 elrestr 16089 . . . . . . . . 9  |-  ( ( U  e.  (UnifOn `  X )  /\  ( A  X.  A )  e. 
_V  /\  u  e.  U )  ->  (
u  i^i  ( A  X.  A ) )  e.  ( Ut  ( A  X.  A ) ) )
2216, 19, 20, 21syl3anc 1326 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  b  e.  ( (unifTop `  U )t  A
) )  /\  x  e.  b )  /\  a  e.  (unifTop `  U )
)  /\  b  =  ( a  i^i  A
) )  /\  u  e.  U )  /\  (
u " { x } )  C_  a
)  ->  ( u  i^i  ( A  X.  A
) )  e.  ( Ut  ( A  X.  A
) ) )
23 inss1 3833 . . . . . . . . . . . . 13  |-  ( u  i^i  ( A  X.  A ) )  C_  u
24 imass1 5500 . . . . . . . . . . . . 13  |-  ( ( u  i^i  ( A  X.  A ) ) 
C_  u  ->  (
( u  i^i  ( A  X.  A ) )
" { x }
)  C_  ( u " { x } ) )
2523, 24ax-mp 5 . . . . . . . . . . . 12  |-  ( ( u  i^i  ( A  X.  A ) )
" { x }
)  C_  ( u " { x } )
26 sstr 3611 . . . . . . . . . . . 12  |-  ( ( ( ( u  i^i  ( A  X.  A
) ) " {
x } )  C_  ( u " {
x } )  /\  ( u " {
x } )  C_  a )  ->  (
( u  i^i  ( A  X.  A ) )
" { x }
)  C_  a )
2725, 26mpan 706 . . . . . . . . . . 11  |-  ( ( u " { x } )  C_  a  ->  ( ( u  i^i  ( A  X.  A
) ) " {
x } )  C_  a )
28 imassrn 5477 . . . . . . . . . . . . . . 15  |-  ( ( u  i^i  ( A  X.  A ) )
" { x }
)  C_  ran  ( u  i^i  ( A  X.  A ) )
29 rnin 5542 . . . . . . . . . . . . . . 15  |-  ran  (
u  i^i  ( A  X.  A ) )  C_  ( ran  u  i^i  ran  ( A  X.  A
) )
3028, 29sstri 3612 . . . . . . . . . . . . . 14  |-  ( ( u  i^i  ( A  X.  A ) )
" { x }
)  C_  ( ran  u  i^i  ran  ( A  X.  A ) )
31 inss2 3834 . . . . . . . . . . . . . 14  |-  ( ran  u  i^i  ran  ( A  X.  A ) ) 
C_  ran  ( A  X.  A )
3230, 31sstri 3612 . . . . . . . . . . . . 13  |-  ( ( u  i^i  ( A  X.  A ) )
" { x }
)  C_  ran  ( A  X.  A )
33 rnxpid 5567 . . . . . . . . . . . . 13  |-  ran  ( A  X.  A )  =  A
3432, 33sseqtri 3637 . . . . . . . . . . . 12  |-  ( ( u  i^i  ( A  X.  A ) )
" { x }
)  C_  A
3534a1i 11 . . . . . . . . . . 11  |-  ( ( u " { x } )  C_  a  ->  ( ( u  i^i  ( A  X.  A
) ) " {
x } )  C_  A )
3627, 35ssind 3837 . . . . . . . . . 10  |-  ( ( u " { x } )  C_  a  ->  ( ( u  i^i  ( A  X.  A
) ) " {
x } )  C_  ( a  i^i  A
) )
3736adantl 482 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  b  e.  ( (unifTop `  U )t  A
) )  /\  x  e.  b )  /\  a  e.  (unifTop `  U )
)  /\  b  =  ( a  i^i  A
) )  /\  u  e.  U )  /\  (
u " { x } )  C_  a
)  ->  ( (
u  i^i  ( A  X.  A ) ) " { x } ) 
C_  ( a  i^i 
A ) )
38 simpllr 799 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  b  e.  ( (unifTop `  U )t  A
) )  /\  x  e.  b )  /\  a  e.  (unifTop `  U )
)  /\  b  =  ( a  i^i  A
) )  /\  u  e.  U )  /\  (
u " { x } )  C_  a
)  ->  b  =  ( a  i^i  A
) )
3937, 38sseqtr4d 3642 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  b  e.  ( (unifTop `  U )t  A
) )  /\  x  e.  b )  /\  a  e.  (unifTop `  U )
)  /\  b  =  ( a  i^i  A
) )  /\  u  e.  U )  /\  (
u " { x } )  C_  a
)  ->  ( (
u  i^i  ( A  X.  A ) ) " { x } ) 
C_  b )
40 imaeq1 5461 . . . . . . . . . 10  |-  ( v  =  ( u  i^i  ( A  X.  A
) )  ->  (
v " { x } )  =  ( ( u  i^i  ( A  X.  A ) )
" { x }
) )
4140sseq1d 3632 . . . . . . . . 9  |-  ( v  =  ( u  i^i  ( A  X.  A
) )  ->  (
( v " {
x } )  C_  b 
<->  ( ( u  i^i  ( A  X.  A
) ) " {
x } )  C_  b ) )
4241rspcev 3309 . . . . . . . 8  |-  ( ( ( u  i^i  ( A  X.  A ) )  e.  ( Ut  ( A  X.  A ) )  /\  ( ( u  i^i  ( A  X.  A ) ) " { x } ) 
C_  b )  ->  E. v  e.  ( Ut  ( A  X.  A
) ) ( v
" { x }
)  C_  b )
4322, 39, 42syl2anc 693 . . . . . . 7  |-  ( ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  b  e.  ( (unifTop `  U )t  A
) )  /\  x  e.  b )  /\  a  e.  (unifTop `  U )
)  /\  b  =  ( a  i^i  A
) )  /\  u  e.  U )  /\  (
u " { x } )  C_  a
)  ->  E. v  e.  ( Ut  ( A  X.  A ) ) ( v " { x } )  C_  b
)
44 simplr 792 . . . . . . . 8  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  b  e.  ( (unifTop `  U
)t 
A ) )  /\  x  e.  b )  /\  a  e.  (unifTop `  U ) )  /\  b  =  ( a  i^i  A ) )  -> 
a  e.  (unifTop `  U
) )
45 inss1 3833 . . . . . . . . 9  |-  ( a  i^i  A )  C_  a
46 simpllr 799 . . . . . . . . . 10  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  b  e.  ( (unifTop `  U
)t 
A ) )  /\  x  e.  b )  /\  a  e.  (unifTop `  U ) )  /\  b  =  ( a  i^i  A ) )  ->  x  e.  b )
47 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  b  e.  ( (unifTop `  U
)t 
A ) )  /\  x  e.  b )  /\  a  e.  (unifTop `  U ) )  /\  b  =  ( a  i^i  A ) )  -> 
b  =  ( a  i^i  A ) )
4846, 47eleqtrd 2703 . . . . . . . . 9  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  b  e.  ( (unifTop `  U
)t 
A ) )  /\  x  e.  b )  /\  a  e.  (unifTop `  U ) )  /\  b  =  ( a  i^i  A ) )  ->  x  e.  ( a  i^i  A ) )
4945, 48sseldi 3601 . . . . . . . 8  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  b  e.  ( (unifTop `  U
)t 
A ) )  /\  x  e.  b )  /\  a  e.  (unifTop `  U ) )  /\  b  =  ( a  i^i  A ) )  ->  x  e.  a )
50 elutop 22037 . . . . . . . . . 10  |-  ( U  e.  (UnifOn `  X
)  ->  ( a  e.  (unifTop `  U )  <->  ( a  C_  X  /\  A. x  e.  a  E. u  e.  U  (
u " { x } )  C_  a
) ) )
5150simplbda 654 . . . . . . . . 9  |-  ( ( U  e.  (UnifOn `  X )  /\  a  e.  (unifTop `  U )
)  ->  A. x  e.  a  E. u  e.  U  ( u " { x } ) 
C_  a )
5251r19.21bi 2932 . . . . . . . 8  |-  ( ( ( U  e.  (UnifOn `  X )  /\  a  e.  (unifTop `  U )
)  /\  x  e.  a )  ->  E. u  e.  U  ( u " { x } ) 
C_  a )
5315, 44, 49, 52syl21anc 1325 . . . . . . 7  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  b  e.  ( (unifTop `  U
)t 
A ) )  /\  x  e.  b )  /\  a  e.  (unifTop `  U ) )  /\  b  =  ( a  i^i  A ) )  ->  E. u  e.  U  ( u " {
x } )  C_  a )
5443, 53r19.29a 3078 . . . . . 6  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  b  e.  ( (unifTop `  U
)t 
A ) )  /\  x  e.  b )  /\  a  e.  (unifTop `  U ) )  /\  b  =  ( a  i^i  A ) )  ->  E. v  e.  ( Ut  ( A  X.  A
) ) ( v
" { x }
)  C_  b )
559adantr 481 . . . . . 6  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  b  e.  ( (unifTop `  U )t  A
) )  /\  x  e.  b )  ->  E. a  e.  (unifTop `  U )
b  =  ( a  i^i  A ) )
5654, 55r19.29a 3078 . . . . 5  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  b  e.  ( (unifTop `  U )t  A
) )  /\  x  e.  b )  ->  E. v  e.  ( Ut  ( A  X.  A ) ) ( v " { x } )  C_  b
)
5756ralrimiva 2966 . . . 4  |-  ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  b  e.  ( (unifTop `  U
)t 
A ) )  ->  A. x  e.  b  E. v  e.  ( Ut  ( A  X.  A
) ) ( v
" { x }
)  C_  b )
58 trust 22033 . . . . . 6  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  ( Ut  ( A  X.  A
) )  e.  (UnifOn `  A ) )
59 elutop 22037 . . . . . 6  |-  ( ( Ut  ( A  X.  A
) )  e.  (UnifOn `  A )  ->  (
b  e.  (unifTop `  ( Ut  ( A  X.  A
) ) )  <->  ( b  C_  A  /\  A. x  e.  b  E. v  e.  ( Ut  ( A  X.  A ) ) ( v " { x } )  C_  b
) ) )
6058, 59syl 17 . . . . 5  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  (
b  e.  (unifTop `  ( Ut  ( A  X.  A
) ) )  <->  ( b  C_  A  /\  A. x  e.  b  E. v  e.  ( Ut  ( A  X.  A ) ) ( v " { x } )  C_  b
) ) )
6160biimpar 502 . . . 4  |-  ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  (
b  C_  A  /\  A. x  e.  b  E. v  e.  ( Ut  ( A  X.  A ) ) ( v " {
x } )  C_  b ) )  -> 
b  e.  (unifTop `  ( Ut  ( A  X.  A
) ) ) )
621, 14, 57, 61syl12anc 1324 . . 3  |-  ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  b  e.  ( (unifTop `  U
)t 
A ) )  -> 
b  e.  (unifTop `  ( Ut  ( A  X.  A
) ) ) )
6362ex 450 . 2  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  (
b  e.  ( (unifTop `  U )t  A )  ->  b  e.  (unifTop `  ( Ut  ( A  X.  A ) ) ) ) )
6463ssrdv 3609 1  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  (
(unifTop `  U )t  A ) 
C_  (unifTop `  ( Ut  ( A  X.  A ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   {csn 4177    X. cxp 5112   ran crn 5115   "cima 5117   ` cfv 5888  (class class class)co 6650   ↾t crest 16081  UnifOncust 22003  unifTopcutop 22034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-rest 16083  df-ust 22004  df-utop 22035
This theorem is referenced by:  restutopopn  22042
  Copyright terms: Public domain W3C validator