MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sectfval Structured version   Visualization version   Unicode version

Theorem sectfval 16411
Description: Value of the section relation. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
issect.b  |-  B  =  ( Base `  C
)
issect.h  |-  H  =  ( Hom  `  C
)
issect.o  |-  .x.  =  (comp `  C )
issect.i  |-  .1.  =  ( Id `  C )
issect.s  |-  S  =  (Sect `  C )
issect.c  |-  ( ph  ->  C  e.  Cat )
issect.x  |-  ( ph  ->  X  e.  B )
issect.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
sectfval  |-  ( ph  ->  ( X S Y )  =  { <. f ,  g >.  |  ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( g ( <. X ,  Y >.  .x.  X ) f )  =  (  .1.  `  X ) ) } )
Distinct variable groups:    f, g,  .1.    C, f, g    ph, f,
g    f, H, g    .x. , f,
g    f, X, g    f, Y, g
Allowed substitution hints:    B( f, g)    S( f, g)

Proof of Theorem sectfval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issect.b . . 3  |-  B  =  ( Base `  C
)
2 issect.h . . 3  |-  H  =  ( Hom  `  C
)
3 issect.o . . 3  |-  .x.  =  (comp `  C )
4 issect.i . . 3  |-  .1.  =  ( Id `  C )
5 issect.s . . 3  |-  S  =  (Sect `  C )
6 issect.c . . 3  |-  ( ph  ->  C  e.  Cat )
7 issect.x . . 3  |-  ( ph  ->  X  e.  B )
81, 2, 3, 4, 5, 6, 7, 7sectffval 16410 . 2  |-  ( ph  ->  S  =  ( x  e.  B ,  y  e.  B  |->  { <. f ,  g >.  |  ( ( f  e.  ( x H y )  /\  g  e.  ( y H x ) )  /\  ( g ( <. x ,  y
>.  .x.  x ) f )  =  (  .1.  `  x ) ) } ) )
9 simprl 794 . . . . . . 7  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  ->  x  =  X )
10 simprr 796 . . . . . . 7  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
y  =  Y )
119, 10oveq12d 6668 . . . . . 6  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( x H y )  =  ( X H Y ) )
1211eleq2d 2687 . . . . 5  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( f  e.  ( x H y )  <-> 
f  e.  ( X H Y ) ) )
1310, 9oveq12d 6668 . . . . . 6  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( y H x )  =  ( Y H X ) )
1413eleq2d 2687 . . . . 5  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( g  e.  ( y H x )  <-> 
g  e.  ( Y H X ) ) )
1512, 14anbi12d 747 . . . 4  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( ( f  e.  ( x H y )  /\  g  e.  ( y H x ) )  <->  ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) ) ) )
169, 10opeq12d 4410 . . . . . . 7  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  ->  <. x ,  y >.  =  <. X ,  Y >. )
1716, 9oveq12d 6668 . . . . . 6  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( <. x ,  y
>.  .x.  x )  =  ( <. X ,  Y >.  .x.  X ) )
1817oveqd 6667 . . . . 5  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( g ( <.
x ,  y >.  .x.  x ) f )  =  ( g (
<. X ,  Y >.  .x. 
X ) f ) )
199fveq2d 6195 . . . . 5  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
(  .1.  `  x
)  =  (  .1.  `  X ) )
2018, 19eqeq12d 2637 . . . 4  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( ( g (
<. x ,  y >.  .x.  x ) f )  =  (  .1.  `  x )  <->  ( g
( <. X ,  Y >.  .x.  X ) f )  =  (  .1.  `  X ) ) )
2115, 20anbi12d 747 . . 3  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( ( ( f  e.  ( x H y )  /\  g  e.  ( y H x ) )  /\  (
g ( <. x ,  y >.  .x.  x
) f )  =  (  .1.  `  x
) )  <->  ( (
f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( g ( <. X ,  Y >.  .x. 
X ) f )  =  (  .1.  `  X ) ) ) )
2221opabbidv 4716 . 2  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  ->  { <. f ,  g
>.  |  ( (
f  e.  ( x H y )  /\  g  e.  ( y H x ) )  /\  ( g (
<. x ,  y >.  .x.  x ) f )  =  (  .1.  `  x ) ) }  =  { <. f ,  g >.  |  ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( g ( <. X ,  Y >.  .x.  X ) f )  =  (  .1.  `  X ) ) } )
23 issect.y . 2  |-  ( ph  ->  Y  e.  B )
24 ovex 6678 . . . . 5  |-  ( X H Y )  e. 
_V
25 ovex 6678 . . . . 5  |-  ( Y H X )  e. 
_V
2624, 25xpex 6962 . . . 4  |-  ( ( X H Y )  X.  ( Y H X ) )  e. 
_V
27 opabssxp 5193 . . . 4  |-  { <. f ,  g >.  |  ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( g ( <. X ,  Y >.  .x.  X ) f )  =  (  .1.  `  X ) ) } 
C_  ( ( X H Y )  X.  ( Y H X ) )
2826, 27ssexi 4803 . . 3  |-  { <. f ,  g >.  |  ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( g ( <. X ,  Y >.  .x.  X ) f )  =  (  .1.  `  X ) ) }  e.  _V
2928a1i 11 . 2  |-  ( ph  ->  { <. f ,  g
>.  |  ( (
f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( g ( <. X ,  Y >.  .x. 
X ) f )  =  (  .1.  `  X ) ) }  e.  _V )
308, 22, 7, 23, 29ovmpt2d 6788 1  |-  ( ph  ->  ( X S Y )  =  { <. f ,  g >.  |  ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( g ( <. X ,  Y >.  .x.  X ) f )  =  (  .1.  `  X ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183   {copab 4712    X. cxp 5112   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326  Sectcsect 16404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-sect 16407
This theorem is referenced by:  sectss  16412  issect  16413  dfiso2  16432
  Copyright terms: Public domain W3C validator