Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setsnidel Structured version   Visualization version   Unicode version

Theorem setsnidel 41347
Description: The injected slot is an element of the structure with replacement. (Contributed by AV, 10-Nov-2021.)
Hypotheses
Ref Expression
setsidel.s  |-  ( ph  ->  S  e.  V )
setsidel.b  |-  ( ph  ->  B  e.  W )
setsidel.r  |-  R  =  ( S sSet  <. A ,  B >. )
setsnidel.c  |-  ( ph  ->  C  e.  X )
setsnidel.d  |-  ( ph  ->  D  e.  Y )
setsnidel.s  |-  ( ph  -> 
<. C ,  D >.  e.  S )
setsnidel.n  |-  ( ph  ->  A  =/=  C )
Assertion
Ref Expression
setsnidel  |-  ( ph  -> 
<. C ,  D >.  e.  R )

Proof of Theorem setsnidel
StepHypRef Expression
1 setsnidel.s . . . 4  |-  ( ph  -> 
<. C ,  D >.  e.  S )
2 setsnidel.c . . . . . 6  |-  ( ph  ->  C  e.  X )
32elexd 3214 . . . . 5  |-  ( ph  ->  C  e.  _V )
4 setsnidel.n . . . . . 6  |-  ( ph  ->  A  =/=  C )
54necomd 2849 . . . . 5  |-  ( ph  ->  C  =/=  A )
6 eldifsn 4317 . . . . 5  |-  ( C  e.  ( _V  \  { A } )  <->  ( C  e.  _V  /\  C  =/= 
A ) )
73, 5, 6sylanbrc 698 . . . 4  |-  ( ph  ->  C  e.  ( _V 
\  { A }
) )
8 setsnidel.d . . . . 5  |-  ( ph  ->  D  e.  Y )
9 opelresg 5404 . . . . 5  |-  ( D  e.  Y  ->  ( <. C ,  D >.  e.  ( S  |`  ( _V  \  { A }
) )  <->  ( <. C ,  D >.  e.  S  /\  C  e.  ( _V  \  { A }
) ) ) )
108, 9syl 17 . . . 4  |-  ( ph  ->  ( <. C ,  D >.  e.  ( S  |`  ( _V  \  { A } ) )  <->  ( <. C ,  D >.  e.  S  /\  C  e.  ( _V  \  { A }
) ) ) )
111, 7, 10mpbir2and 957 . . 3  |-  ( ph  -> 
<. C ,  D >.  e.  ( S  |`  ( _V  \  { A }
) ) )
12 elun1 3780 . . 3  |-  ( <. C ,  D >.  e.  ( S  |`  ( _V  \  { A }
) )  ->  <. C ,  D >.  e.  ( ( S  |`  ( _V  \  { A } ) )  u.  { <. A ,  B >. } ) )
1311, 12syl 17 . 2  |-  ( ph  -> 
<. C ,  D >.  e.  ( ( S  |`  ( _V  \  { A } ) )  u. 
{ <. A ,  B >. } ) )
14 setsidel.r . . 3  |-  R  =  ( S sSet  <. A ,  B >. )
15 setsidel.s . . . 4  |-  ( ph  ->  S  e.  V )
16 setsidel.b . . . 4  |-  ( ph  ->  B  e.  W )
17 setsval 15888 . . . 4  |-  ( ( S  e.  V  /\  B  e.  W )  ->  ( S sSet  <. A ,  B >. )  =  ( ( S  |`  ( _V  \  { A }
) )  u.  { <. A ,  B >. } ) )
1815, 16, 17syl2anc 693 . . 3  |-  ( ph  ->  ( S sSet  <. A ,  B >. )  =  ( ( S  |`  ( _V  \  { A }
) )  u.  { <. A ,  B >. } ) )
1914, 18syl5eq 2668 . 2  |-  ( ph  ->  R  =  ( ( S  |`  ( _V  \  { A } ) )  u.  { <. A ,  B >. } ) )
2013, 19eleqtrrd 2704 1  |-  ( ph  -> 
<. C ,  D >.  e.  R )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571    u. cun 3572   {csn 4177   <.cop 4183    |` cres 5116  (class class class)co 6650   sSet csts 15855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-sets 15864
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator