Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsw0glem Structured version   Visualization version   Unicode version

Theorem signsw0glem 30630
Description: Neutral element property of  .+^. (Contributed by Thierry Arnoux, 9-Sep-2018.)
Hypothesis
Ref Expression
signsw.p  |-  .+^  =  ( a  e.  { -u
1 ,  0 ,  1 } ,  b  e.  { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b ) )
Assertion
Ref Expression
signsw0glem  |-  A. u  e.  { -u 1 ,  0 ,  1 }  ( ( 0  .+^  u )  =  u  /\  ( u  .+^  0 )  =  u )
Distinct variable group:    a, b, u
Allowed substitution hints:    .+^ ( u, a,
b)

Proof of Theorem signsw0glem
StepHypRef Expression
1 c0ex 10034 . . . . . 6  |-  0  e.  _V
21tpid2 4304 . . . . 5  |-  0  e.  { -u 1 ,  0 ,  1 }
3 signsw.p . . . . . 6  |-  .+^  =  ( a  e.  { -u
1 ,  0 ,  1 } ,  b  e.  { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b ) )
43signspval 30629 . . . . 5  |-  ( ( 0  e.  { -u
1 ,  0 ,  1 }  /\  u  e.  { -u 1 ,  0 ,  1 } )  ->  ( 0 
.+^  u )  =  if ( u  =  0 ,  0 ,  u ) )
52, 4mpan 706 . . . 4  |-  ( u  e.  { -u 1 ,  0 ,  1 }  ->  ( 0 
.+^  u )  =  if ( u  =  0 ,  0 ,  u ) )
6 iftrue 4092 . . . . . 6  |-  ( u  =  0  ->  if ( u  =  0 ,  0 ,  u
)  =  0 )
7 id 22 . . . . . 6  |-  ( u  =  0  ->  u  =  0 )
86, 7eqtr4d 2659 . . . . 5  |-  ( u  =  0  ->  if ( u  =  0 ,  0 ,  u
)  =  u )
9 iffalse 4095 . . . . 5  |-  ( -.  u  =  0  ->  if ( u  =  0 ,  0 ,  u
)  =  u )
108, 9pm2.61i 176 . . . 4  |-  if ( u  =  0 ,  0 ,  u )  =  u
115, 10syl6eq 2672 . . 3  |-  ( u  e.  { -u 1 ,  0 ,  1 }  ->  ( 0 
.+^  u )  =  u )
123signspval 30629 . . . . 5  |-  ( ( u  e.  { -u
1 ,  0 ,  1 }  /\  0  e.  { -u 1 ,  0 ,  1 } )  ->  ( u  .+^  0 )  =  if ( 0  =  0 ,  u ,  0 ) )
132, 12mpan2 707 . . . 4  |-  ( u  e.  { -u 1 ,  0 ,  1 }  ->  ( u  .+^  0 )  =  if ( 0  =  0 ,  u ,  0 ) )
14 eqid 2622 . . . . 5  |-  0  =  0
1514iftruei 4093 . . . 4  |-  if ( 0  =  0 ,  u ,  0 )  =  u
1613, 15syl6eq 2672 . . 3  |-  ( u  e.  { -u 1 ,  0 ,  1 }  ->  ( u  .+^  0 )  =  u )
1711, 16jca 554 . 2  |-  ( u  e.  { -u 1 ,  0 ,  1 }  ->  ( (
0  .+^  u )  =  u  /\  ( u 
.+^  0 )  =  u ) )
1817rgen 2922 1  |-  A. u  e.  { -u 1 ,  0 ,  1 }  ( ( 0  .+^  u )  =  u  /\  ( u  .+^  0 )  =  u )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   ifcif 4086   {ctp 4181  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   1c1 9937   -ucneg 10267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-mulcl 9998  ax-i2m1 10004
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  signsw0g  30633  signswmnd  30634
  Copyright terms: Public domain W3C validator