HomeHome Metamath Proof Explorer
Theorem List (p. 307 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 30601-30700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsgnclre 30601 Closure of the signum. (Contributed by Thierry Arnoux, 28-Sep-2018.)
 |-  ( A  e.  RR  ->  (sgn `  A )  e.  RR )
 
Theoremsgnneg 30602 Negation of the signum. (Contributed by Thierry Arnoux, 1-Oct-2018.)
 |-  ( A  e.  RR  ->  (sgn `  -u A )  =  -u (sgn `  A )
 )
 
Theoremsgn3da 30603 A conditional containing a signum is true if it is true in all three possible cases. (Contributed by Thierry Arnoux, 1-Oct-2018.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( (sgn `  A )  =  0  ->  ( ps  <->  ch ) )   &    |-  (
 (sgn `  A )  =  1  ->  ( ps  <->  th ) )   &    |-  ( (sgn `  A )  =  -u 1  ->  ( ps  <->  ta ) )   &    |-  (
 ( ph  /\  A  =  0 )  ->  ch )   &    |-  (
 ( ph  /\  0  <  A )  ->  th )   &    |-  (
 ( ph  /\  A  <  0 )  ->  ta )   =>    |-  ( ph  ->  ps )
 
Theoremsgnmul 30604 Signum of a product. (Contributed by Thierry Arnoux, 2-Oct-2018.)
 |-  (
 ( A  e.  RR  /\  B  e.  RR )  ->  (sgn `  ( A  x.  B ) )  =  ( (sgn `  A )  x.  (sgn `  B ) ) )
 
Theoremsgnmulrp2 30605 Multiplication by a positive number does not affect signum. (Contributed by Thierry Arnoux, 2-Oct-2018.)
 |-  (
 ( A  e.  RR  /\  B  e.  RR+ )  ->  (sgn `  ( A  x.  B ) )  =  (sgn `  A )
 )
 
Theoremsgnsub 30606 Subtraction of a number of opposite sign. (Contributed by Thierry Arnoux, 2-Oct-2018.)
 |-  (
 ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  x.  B )  <  0 ) 
 ->  (sgn `  ( A  -  B ) )  =  (sgn `  A )
 )
 
Theoremsgnnbi 30607 Negative signum. (Contributed by Thierry Arnoux, 2-Oct-2018.)
 |-  ( A  e.  RR*  ->  (
 (sgn `  A )  =  -u 1  <->  A  <  0 ) )
 
Theoremsgnpbi 30608 Positive signum. (Contributed by Thierry Arnoux, 2-Oct-2018.)
 |-  ( A  e.  RR*  ->  (
 (sgn `  A )  =  1  <->  0  <  A ) )
 
Theoremsgn0bi 30609 Zero signum. (Contributed by Thierry Arnoux, 10-Oct-2018.)
 |-  ( A  e.  RR*  ->  (
 (sgn `  A )  =  0  <->  A  =  0
 ) )
 
Theoremsgnsgn 30610 Signum is idempotent. (Contributed by Thierry Arnoux, 2-Oct-2018.)
 |-  ( A  e.  RR*  ->  (sgn `  (sgn `  A )
 )  =  (sgn `  A ) )
 
Theoremsgnmulsgn 30611 If two real numbers are of different signs, so are their signs. (Contributed by Thierry Arnoux, 12-Oct-2018.)
 |-  (
 ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  x.  B )  <  0  <->  ( (sgn `  A )  x.  (sgn `  B ) )  < 
 0 ) )
 
Theoremsgnmulsgp 30612 If two real numbers are of different signs, so are their signs. (Contributed by Thierry Arnoux, 12-Oct-2018.)
 |-  (
 ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <  ( A  x.  B )  <->  0  <  (
 (sgn `  A )  x.  (sgn `  B )
 ) ) )
 
Theoremfzssfzo 30613 Condition for an integer interval to be a subset of an half-open integer interval. (Contributed by Thierry Arnoux, 8-Oct-2018.)
 |-  ( K  e.  ( M..^ N )  ->  ( M
 ... K )  C_  ( M..^ N ) )
 
Theoremgsumncl 30614* Closure of a group sum in a non-commutative monoid. (Contributed by Thierry Arnoux, 8-Oct-2018.)
 |-  K  =  ( Base `  M )   &    |-  ( ph  ->  M  e.  Mnd )   &    |-  ( ph  ->  P  e.  ( ZZ>= `  N )
 )   &    |-  ( ( ph  /\  k  e.  ( N ... P ) )  ->  B  e.  K )   =>    |-  ( ph  ->  ( M  gsumg  ( k  e.  ( N ... P )  |->  B ) )  e.  K )
 
Theoremgsumnunsn 30615* Closure of a group sum in a non-commutative monoid. (Contributed by Thierry Arnoux, 8-Oct-2018.)
 |-  K  =  ( Base `  M )   &    |-  ( ph  ->  M  e.  Mnd )   &    |-  ( ph  ->  P  e.  ( ZZ>= `  N )
 )   &    |-  ( ( ph  /\  k  e.  ( N ... P ) )  ->  B  e.  K )   &    |-  .+  =  ( +g  `  M )   &    |-  ( ph  ->  C  e.  K )   &    |-  ( ( ph  /\  k  =  ( P  +  1 ) )  ->  B  =  C )   =>    |-  ( ph  ->  ( M  gsumg  ( k  e.  ( N ... ( P  +  1 ) )  |->  B ) )  =  ( ( M  gsumg  ( k  e.  ( N ... P )  |->  B ) )  .+  C ) )
 
20.3.23  Words over a set - misc additions
 
Theoremwrdfd 30616 A word is a zero-based sequence with a recoverable upper limit, deduction version. (Contributed by Thierry Arnoux, 22-Dec-2021.)
 |-  ( ph  ->  N  =  ( # `  W ) )   &    |-  ( ph  ->  W  e. Word  S )   =>    |-  ( ph  ->  W : ( 0..^ N )
 --> S )
 
Theoremwrdres 30617 Condition for the restriction of a word to be a word itself. (Contributed by Thierry Arnoux, 5-Oct-2018.)
 |-  (
 ( W  e. Word  S  /\  N  e.  ( 0
 ... ( # `  W ) ) )  ->  ( W  |`  ( 0..^ N ) )  e. Word  S )
 
Theoremwrdsplex 30618* Existence of a split of a word at a given index. (Contributed by Thierry Arnoux, 11-Oct-2018.)
 |-  (
 ( W  e. Word  S  /\  N  e.  ( 0
 ... ( # `  W ) ) )  ->  E. v  e. Word  S W  =  ( ( W  |`  ( 0..^ N ) ) ++  v
 ) )
 
20.3.23.1  Operations on words
 
Theoremccatmulgnn0dir 30619 Concatenation of words follow the rule mulgnn0dir 17571 (although applying mulgnn0dir 17571 would require  S to be a set). In this case  A is  <" K "> to the power  M in the free monoid. (Contributed by Thierry Arnoux, 5-Oct-2018.)
 |-  A  =  ( ( 0..^ M )  X.  { K }
 )   &    |-  B  =  ( ( 0..^ N )  X.  { K } )   &    |-  C  =  ( ( 0..^ ( M  +  N ) )  X.  { K } )   &    |-  ( ph  ->  K  e.  S )   &    |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ph  ->  N  e.  NN0 )   =>    |-  ( ph  ->  ( A ++  B )  =  C )
 
Theoremofcccat 30620 Letterwise operations on word concatenations. (Contributed by Thierry Arnoux, 5-Oct-2018.)
 |-  ( ph  ->  F  e. Word  S )   &    |-  ( ph  ->  G  e. Word  S )   &    |-  ( ph  ->  K  e.  T )   =>    |-  ( ph  ->  ( ( F ++  G )𝑓/𝑐 R K )  =  ( ( F𝑓/𝑐 R K ) ++  ( G𝑓/𝑐 R K ) ) )
 
Theoremofcs1 30621 Letterwise operations on a single letter word. (Contributed by Thierry Arnoux, 7-Oct-2018.)
 |-  (
 ( A  e.  S  /\  B  e.  T ) 
 ->  ( <" A ">𝑓/𝑐 R B )  =  <" ( A R B ) "> )
 
Theoremofcs2 30622 Letterwise operations on a double letter word. (Contributed by Thierry Arnoux, 9-Oct-2018.)
 |-  (
 ( A  e.  S  /\  B  e.  S  /\  C  e.  T )  ->  ( <" A B ">𝑓/𝑐 R C )  =  <" ( A R C ) ( B R C ) "> )
 
20.3.24  Polynomials with real coefficients - misc additions
 
Theoremplymul02 30623 Product of a polynomial with the zero polynomial. (Contributed by Thierry Arnoux, 26-Sep-2018.)
 |-  ( F  e.  (Poly `  S )  ->  ( 0p  oF  x.  F )  =  0p
 )
 
Theoremplymulx0 30624* Coefficients of a polynomial multiplyed by  Xp. (Contributed by Thierry Arnoux, 25-Sep-2018.)
 |-  ( F  e.  ( (Poly `  RR )  \  {
 0p } )  ->  (coeff `  ( F  oF  x.  Xp ) )  =  ( n  e.  NN0  |->  if ( n  =  0 ,  0 ,  (
 (coeff `  F ) `  ( n  -  1
 ) ) ) ) )
 
Theoremplymulx 30625* Coefficients of a polynomial multiplyed by  Xp. (Contributed by Thierry Arnoux, 25-Sep-2018.)
 |-  ( F  e.  (Poly `  RR )  ->  (coeff `  ( F  oF  x.  Xp ) )  =  ( n  e.  NN0  |->  if ( n  =  0 ,  0 ,  (
 (coeff `  F ) `  ( n  -  1
 ) ) ) ) )
 
Theoremplyrecld 30626 Closure of a polynomial with real coefficients. (Contributed by Thierry Arnoux, 18-Sep-2018.)
 |-  ( ph  ->  F  e.  (Poly `  RR ) )   &    |-  ( ph  ->  X  e.  RR )   =>    |-  ( ph  ->  ( F `  X )  e. 
 RR )
 
Theoremsignsplypnf 30627* The quotient of a polynomial  F by a monic monomial of same degree  G converges to the highest coefficient of  F. (Contributed by Thierry Arnoux, 18-Sep-2018.)
 |-  D  =  (deg `  F )   &    |-  C  =  (coeff `  F )   &    |-  B  =  ( C `  D )   &    |-  G  =  ( x  e.  RR+  |->  ( x ^ D ) )   =>    |-  ( F  e.  (Poly `  RR )  ->  ( F  oF  /  G ) 
 ~~> r  B )
 
Theoremsignsply0 30628* Lemma for the rule of signs, based on Bolzano's intermediate value theorem for polynomials : If the lowest and highest coefficient  A and  B are of opposite signs, the polynomial admits a positive root. (Contributed by Thierry Arnoux, 19-Sep-2018.)
 |-  D  =  (deg `  F )   &    |-  C  =  (coeff `  F )   &    |-  B  =  ( C `  D )   &    |-  A  =  ( C `
  0 )   &    |-  ( ph  ->  F  e.  (Poly `  RR ) )   &    |-  ( ph  ->  F  =/=  0p )   &    |-  ( ph  ->  ( A  x.  B )  <  0 )   =>    |-  ( ph  ->  E. z  e.  RR+  ( F `
  z )  =  0 )
 
20.3.25  Descartes's rule of signs
 
20.3.25.1  Sign changes in a word over real numbers
 
Theoremsignspval 30629* The value of the skipping 0 sign operation. (Contributed by Thierry Arnoux, 9-Sep-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   =>    |-  ( ( X  e.  {
 -u 1 ,  0 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  ->  ( X  .+^  Y )  =  if ( Y  =  0 ,  X ,  Y ) )
 
Theoremsignsw0glem 30630* Neutral element property of 
.+^. (Contributed by Thierry Arnoux, 9-Sep-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   =>    |- 
 A. u  e.  { -u 1 ,  0 ,  1 }  ( ( 0  .+^  u )  =  u  /\  ( u  .+^  0 )  =  u )
 
Theoremsignswbase 30631 The base of  W is the triplet reprensenting the possible signs. (Contributed by Thierry Arnoux, 9-Sep-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   =>    |-  { -u 1 ,  0 ,  1 }  =  ( Base `  W )
 
Theoremsignswplusg 30632* The operation of  W. (Contributed by Thierry Arnoux, 9-Sep-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   =>    |-  .+^  =  ( +g  `  W )
 
Theoremsignsw0g 30633* The neutral element of  W. (Contributed by Thierry Arnoux, 9-Sep-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   =>    |-  0  =  ( 0g `  W )
 
Theoremsignswmnd 30634*  W is a monoid structure on  { -u 1 ,  0 ,  1 } which operation retains the right side, but skips zeroes. This will be used for skipping zeroes when counting sign changes. (Contributed by Thierry Arnoux, 9-Sep-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   =>    |-  W  e.  Mnd
 
Theoremsignswrid 30635* The zero-skipping operation propagages nonzeros. (Contributed by Thierry Arnoux, 11-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   =>    |-  ( X  e.  {
 -u 1 ,  0 ,  1 }  ->  ( X  .+^  0 )  =  X )
 
Theoremsignswlid 30636* The zero-skipping operation keeps nonzeros. (Contributed by Thierry Arnoux, 12-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   =>    |-  ( ( ( X  e.  { -u 1 ,  0 ,  1 }  /\  Y  e.  {
 -u 1 ,  0 ,  1 } )  /\  Y  =/=  0 ) 
 ->  ( X  .+^  Y )  =  Y )
 
Theoremsignswn0 30637* The zero-skipping operation propagages nonzeros. (Contributed by Thierry Arnoux, 11-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   =>    |-  ( ( ( X  e.  { -u 1 ,  0 ,  1 }  /\  Y  e.  {
 -u 1 ,  0 ,  1 } )  /\  X  =/=  0 ) 
 ->  ( X  .+^  Y )  =/=  0 )
 
Theoremsignswch 30638* The zero-skipping operation changes value when the operands change signs. (Contributed by Thierry Arnoux, 9-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   =>    |-  ( ( X  e.  { -u 1 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  ->  (
 ( X  .+^  Y )  =/=  X  <->  ( X  x.  Y )  <  0 ) )
 
20.3.25.2  Counting sign changes in a word over real numbers
 
Theoremsignslema 30639 Computational part of signwlemn . (Contributed by Thierry Arnoux, 29-Sep-2018.)
 |-  ( ph  ->  E  e.  NN0 )   &    |-  ( ph  ->  F  e.  NN0 )   &    |-  ( ph  ->  G  e.  NN0 )   &    |-  ( ph  ->  H  e.  NN0 )   &    |-  ( ph  ->  ( E  <  G  /\  -.  2  ||  ( G  -  E ) ) )   &    |-  ( ph  ->  ( ( H  -  G )  -  ( F  -  E ) )  e.  { 0 ,  2 } )   =>    |-  ( ph  ->  ( F  <  H 
 /\  -.  2  ||  ( H  -  F ) ) )
 
Theoremsignstfv 30640* Value of the zero-skipping sign word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   &    |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
 0..^ ( # `  f
 ) )  |->  ( W 
 gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( f `  i
 ) ) ) ) ) )   &    |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f ) ) if ( ( ( T `
  f ) `  j )  =/=  (
 ( T `  f
 ) `  ( j  -  1 ) ) ,  1 ,  0 ) )   =>    |-  ( F  e. Word  RR  ->  ( T `  F )  =  ( n  e.  ( 0..^ ( # `  F ) )  |->  ( W  gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( F `  i
 ) ) ) ) ) )
 
Theoremsignstfval 30641* Value of the zero-skipping sign word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   &    |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
 0..^ ( # `  f
 ) )  |->  ( W 
 gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( f `  i
 ) ) ) ) ) )   &    |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f ) ) if ( ( ( T `
  f ) `  j )  =/=  (
 ( T `  f
 ) `  ( j  -  1 ) ) ,  1 ,  0 ) )   =>    |-  ( ( F  e. Word  RR 
 /\  N  e.  (
 0..^ ( # `  F ) ) )  ->  ( ( T `  F ) `  N )  =  ( W  gsumg  (
 i  e.  ( 0
 ... N )  |->  (sgn `  ( F `  i
 ) ) ) ) )
 
Theoremsignstcl 30642* Closure of the zero skipping sign word. (Contributed by Thierry Arnoux, 9-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   &    |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
 0..^ ( # `  f
 ) )  |->  ( W 
 gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( f `  i
 ) ) ) ) ) )   &    |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f ) ) if ( ( ( T `
  f ) `  j )  =/=  (
 ( T `  f
 ) `  ( j  -  1 ) ) ,  1 ,  0 ) )   =>    |-  ( ( F  e. Word  RR 
 /\  N  e.  (
 0..^ ( # `  F ) ) )  ->  ( ( T `  F ) `  N )  e.  { -u 1 ,  0 ,  1 } )
 
Theoremsignstf 30643* The zero skipping sign word is a word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   &    |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
 0..^ ( # `  f
 ) )  |->  ( W 
 gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( f `  i
 ) ) ) ) ) )   &    |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f ) ) if ( ( ( T `
  f ) `  j )  =/=  (
 ( T `  f
 ) `  ( j  -  1 ) ) ,  1 ,  0 ) )   =>    |-  ( F  e. Word  RR  ->  ( T `  F )  e. Word  RR )
 
Theoremsignstlen 30644* Length of the zero skipping sign word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   &    |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
 0..^ ( # `  f
 ) )  |->  ( W 
 gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( f `  i
 ) ) ) ) ) )   &    |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f ) ) if ( ( ( T `
  f ) `  j )  =/=  (
 ( T `  f
 ) `  ( j  -  1 ) ) ,  1 ,  0 ) )   =>    |-  ( F  e. Word  RR  ->  ( # `  ( T `  F ) )  =  ( # `  F ) )
 
Theoremsignstf0 30645* Sign of a single letter word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   &    |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
 0..^ ( # `  f
 ) )  |->  ( W 
 gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( f `  i
 ) ) ) ) ) )   &    |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f ) ) if ( ( ( T `
  f ) `  j )  =/=  (
 ( T `  f
 ) `  ( j  -  1 ) ) ,  1 ,  0 ) )   =>    |-  ( K  e.  RR  ->  ( T `  <" K "> )  =  <" (sgn `  K ) "> )
 
Theoremsignstfvn 30646* Zero-skipping sign in a word compared to a shorter word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   &    |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
 0..^ ( # `  f
 ) )  |->  ( W 
 gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( f `  i
 ) ) ) ) ) )   &    |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f ) ) if ( ( ( T `
  f ) `  j )  =/=  (
 ( T `  f
 ) `  ( j  -  1 ) ) ,  1 ,  0 ) )   =>    |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  K  e.  RR )  ->  ( ( T `  ( F ++  <" K "> ) ) `  ( # `  F ) )  =  ( ( ( T `  F ) `  ( ( # `  F )  -  1
 ) )  .+^  (sgn `  K ) ) )
 
Theoremsignsvtn0 30647* If the last letter is non zero, then this is the zero-skipping sign. (Contributed by Thierry Arnoux, 8-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   &    |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
 0..^ ( # `  f
 ) )  |->  ( W 
 gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( f `  i
 ) ) ) ) ) )   &    |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f ) ) if ( ( ( T `
  f ) `  j )  =/=  (
 ( T `  f
 ) `  ( j  -  1 ) ) ,  1 ,  0 ) )   &    |-  N  =  ( # `  F )   =>    |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  ( N  -  1 ) )  =/=  0 )  ->  ( ( T `  F ) `  ( N  -  1 ) )  =  (sgn `  ( F `  ( N  -  1 ) ) ) )
 
Theoremsignstfvp 30648* Zero-skipping sign in a word compared to a shorter word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   &    |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
 0..^ ( # `  f
 ) )  |->  ( W 
 gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( f `  i
 ) ) ) ) ) )   &    |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f ) ) if ( ( ( T `
  f ) `  j )  =/=  (
 ( T `  f
 ) `  ( j  -  1 ) ) ,  1 ,  0 ) )   =>    |-  ( ( F  e. Word  RR 
 /\  K  e.  RR  /\  N  e.  ( 0..^ ( # `  F ) ) )  ->  ( ( T `  ( F ++  <" K "> ) ) `  N )  =  (
 ( T `  F ) `  N ) )
 
Theoremsignstfvneq0 30649* In case the first letter is not zero, the zero skipping sign is never zero. (Contributed by Thierry Arnoux, 10-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   &    |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
 0..^ ( # `  f
 ) )  |->  ( W 
 gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( f `  i
 ) ) ) ) ) )   &    |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f ) ) if ( ( ( T `
  f ) `  j )  =/=  (
 ( T `  f
 ) `  ( j  -  1 ) ) ,  1 ,  0 ) )   =>    |-  ( ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  0 )  =/=  0 )  /\  N  e.  ( 0..^ ( # `  F ) ) )  ->  (
 ( T `  F ) `  N )  =/=  0 )
 
Theoremsignstfvcl 30650* Closure of the zero skipping sign in case the first letter is not zero. (Contributed by Thierry Arnoux, 10-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   &    |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
 0..^ ( # `  f
 ) )  |->  ( W 
 gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( f `  i
 ) ) ) ) ) )   &    |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f ) ) if ( ( ( T `
  f ) `  j )  =/=  (
 ( T `  f
 ) `  ( j  -  1 ) ) ,  1 ,  0 ) )   =>    |-  ( ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  0 )  =/=  0 )  /\  N  e.  ( 0..^ ( # `  F ) ) )  ->  (
 ( T `  F ) `  N )  e. 
 { -u 1 ,  1 } )
 
Theoremsignstfvc 30651* Zero-skipping sign in a word compared to a shorter word. (Contributed by Thierry Arnoux, 11-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   &    |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
 0..^ ( # `  f
 ) )  |->  ( W 
 gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( f `  i
 ) ) ) ) ) )   &    |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f ) ) if ( ( ( T `
  f ) `  j )  =/=  (
 ( T `  f
 ) `  ( j  -  1 ) ) ,  1 ,  0 ) )   =>    |-  ( ( F  e. Word  RR 
 /\  G  e. Word  RR  /\  N  e.  ( 0..^ ( # `  F ) ) )  ->  ( ( T `  ( F ++  G )
 ) `  N )  =  ( ( T `  F ) `  N ) )
 
Theoremsignstres 30652* Restriction of a zero skipping sign to a subword. (Contributed by Thierry Arnoux, 11-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   &    |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
 0..^ ( # `  f
 ) )  |->  ( W 
 gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( f `  i
 ) ) ) ) ) )   &    |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f ) ) if ( ( ( T `
  f ) `  j )  =/=  (
 ( T `  f
 ) `  ( j  -  1 ) ) ,  1 ,  0 ) )   =>    |-  ( ( F  e. Word  RR 
 /\  N  e.  (
 0 ... ( # `  F ) ) )  ->  ( ( T `  F )  |`  ( 0..^ N ) )  =  ( T `  ( F  |`  ( 0..^ N ) ) ) )
 
Theoremsignstfveq0a 30653* Lemma for signstfveq0 30654. (Contributed by Thierry Arnoux, 11-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   &    |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
 0..^ ( # `  f
 ) )  |->  ( W 
 gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( f `  i
 ) ) ) ) ) )   &    |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f ) ) if ( ( ( T `
  f ) `  j )  =/=  (
 ( T `  f
 ) `  ( j  -  1 ) ) ,  1 ,  0 ) )   &    |-  N  =  ( # `  F )   =>    |-  ( ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  0 )  =/=  0 )  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  N  e.  ( ZZ>= `  2 ) )
 
Theoremsignstfveq0 30654* In case the last letter is zero, the zero skipping sign is the same as the previous letter. (Contributed by Thierry Arnoux, 11-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   &    |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
 0..^ ( # `  f
 ) )  |->  ( W 
 gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( f `  i
 ) ) ) ) ) )   &    |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f ) ) if ( ( ( T `
  f ) `  j )  =/=  (
 ( T `  f
 ) `  ( j  -  1 ) ) ,  1 ,  0 ) )   &    |-  N  =  ( # `  F )   =>    |-  ( ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  0 )  =/=  0 )  /\  ( F `  ( N  -  1 ) )  =  0 )  ->  ( ( T `  F ) `  ( N  -  1 ) )  =  ( ( T `
  F ) `  ( N  -  2
 ) ) )
 
Theoremsignsvvfval 30655* The value of  V, which represents the number of times the sign changes in a word. (Contributed by Thierry Arnoux, 7-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   &    |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
 0..^ ( # `  f
 ) )  |->  ( W 
 gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( f `  i
 ) ) ) ) ) )   &    |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f ) ) if ( ( ( T `
  f ) `  j )  =/=  (
 ( T `  f
 ) `  ( j  -  1 ) ) ,  1 ,  0 ) )   =>    |-  ( F  e. Word  RR  ->  ( V `  F )  =  sum_ j  e.  ( 1..^ ( # `  F ) ) if ( ( ( T `
  F ) `  j )  =/=  (
 ( T `  F ) `  ( j  -  1 ) ) ,  1 ,  0 ) )
 
Theoremsignsvvf 30656*  V is a function. (Contributed by Thierry Arnoux, 8-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   &    |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
 0..^ ( # `  f
 ) )  |->  ( W 
 gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( f `  i
 ) ) ) ) ) )   &    |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f ) ) if ( ( ( T `
  f ) `  j )  =/=  (
 ( T `  f
 ) `  ( j  -  1 ) ) ,  1 ,  0 ) )   =>    |-  V :Word  RR --> NN0
 
Theoremsignsvf0 30657* There is no change of sign in the empty word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   &    |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
 0..^ ( # `  f
 ) )  |->  ( W 
 gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( f `  i
 ) ) ) ) ) )   &    |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f ) ) if ( ( ( T `
  f ) `  j )  =/=  (
 ( T `  f
 ) `  ( j  -  1 ) ) ,  1 ,  0 ) )   =>    |-  ( V `  (/) )  =  0
 
Theoremsignsvf1 30658* In a single-letter word, which represents a constant polynomial, there is no change of sign. (Contributed by Thierry Arnoux, 8-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   &    |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
 0..^ ( # `  f
 ) )  |->  ( W 
 gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( f `  i
 ) ) ) ) ) )   &    |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f ) ) if ( ( ( T `
  f ) `  j )  =/=  (
 ( T `  f
 ) `  ( j  -  1 ) ) ,  1 ,  0 ) )   =>    |-  ( K  e.  RR  ->  ( V `  <" K "> )  =  0 )
 
Theoremsignsvfn 30659* Number of changes in a word compared to a shorter word. (Contributed by Thierry Arnoux, 12-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   &    |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
 0..^ ( # `  f
 ) )  |->  ( W 
 gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( f `  i
 ) ) ) ) ) )   &    |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f ) ) if ( ( ( T `
  f ) `  j )  =/=  (
 ( T `  f
 ) `  ( j  -  1 ) ) ,  1 ,  0 ) )   =>    |-  ( ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  0 )  =/=  0 )  /\  K  e.  RR )  ->  ( V `  ( F ++  <" K "> ) )  =  ( ( V `  F )  +  if (
 ( ( ( T `
  F ) `  ( ( # `  F )  -  1 ) )  x.  K )  < 
 0 ,  1 ,  0 ) ) )
 
Theoremsignsvtp 30660* Adding a letter of the same sign as the highest coefficient does not change the sign. (Contributed by Thierry Arnoux, 12-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   &    |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
 0..^ ( # `  f
 ) )  |->  ( W 
 gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( f `  i
 ) ) ) ) ) )   &    |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f ) ) if ( ( ( T `
  f ) `  j )  =/=  (
 ( T `  f
 ) `  ( j  -  1 ) ) ,  1 ,  0 ) )   &    |-  ( ph  ->  E  e.  (Word  RR  \  { (/) } ) )   &    |-  ( ph  ->  ( E `  0 )  =/=  0
 )   &    |-  ( ph  ->  F  =  ( E ++  <" A "> ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  N  =  ( # `  E )   &    |-  B  =  ( ( T `  E ) `  ( N  -  1 ) )   =>    |-  ( ( ph  /\  0  <  ( A  x.  B ) ) 
 ->  ( V `  F )  =  ( V `  E ) )
 
Theoremsignsvtn 30661* Adding a letter of a different sign as the highest coefficient changes the sign. (Contributed by Thierry Arnoux, 12-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   &    |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
 0..^ ( # `  f
 ) )  |->  ( W 
 gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( f `  i
 ) ) ) ) ) )   &    |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f ) ) if ( ( ( T `
  f ) `  j )  =/=  (
 ( T `  f
 ) `  ( j  -  1 ) ) ,  1 ,  0 ) )   &    |-  ( ph  ->  E  e.  (Word  RR  \  { (/) } ) )   &    |-  ( ph  ->  ( E `  0 )  =/=  0
 )   &    |-  ( ph  ->  F  =  ( E ++  <" A "> ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  N  =  ( # `  E )   &    |-  B  =  ( ( T `  E ) `  ( N  -  1 ) )   =>    |-  ( ( ph  /\  ( A  x.  B )  <  0 )  ->  ( ( V `  F )  -  ( V `  E ) )  =  1 )
 
Theoremsignsvfpn 30662* Adding a letter of the same sign as the highest coefficient does not change the sign. (Contributed by Thierry Arnoux, 12-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   &    |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
 0..^ ( # `  f
 ) )  |->  ( W 
 gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( f `  i
 ) ) ) ) ) )   &    |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f ) ) if ( ( ( T `
  f ) `  j )  =/=  (
 ( T `  f
 ) `  ( j  -  1 ) ) ,  1 ,  0 ) )   &    |-  ( ph  ->  E  e.  (Word  RR  \  { (/) } ) )   &    |-  ( ph  ->  ( E `  0 )  =/=  0
 )   &    |-  ( ph  ->  F  =  ( E ++  <" A "> ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  N  =  ( # `  E )   &    |-  B  =  ( E `  ( N  -  1 ) )   =>    |-  ( ( ph  /\  0  <  ( B  x.  A ) )  ->  ( V `
  F )  =  ( V `  E ) )
 
Theoremsignsvfnn 30663* Adding a letter of a different sign as the highest coefficient changes the sign. (Contributed by Thierry Arnoux, 12-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   &    |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
 0..^ ( # `  f
 ) )  |->  ( W 
 gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( f `  i
 ) ) ) ) ) )   &    |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f ) ) if ( ( ( T `
  f ) `  j )  =/=  (
 ( T `  f
 ) `  ( j  -  1 ) ) ,  1 ,  0 ) )   &    |-  ( ph  ->  E  e.  (Word  RR  \  { (/) } ) )   &    |-  ( ph  ->  ( E `  0 )  =/=  0
 )   &    |-  ( ph  ->  F  =  ( E ++  <" A "> ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  N  =  ( # `  E )   &    |-  B  =  ( E `  ( N  -  1 ) )   =>    |-  ( ( ph  /\  ( B  x.  A )  < 
 0 )  ->  (
 ( V `  F )  -  ( V `  E ) )  =  1 )
 
Theoremsignlem0 30664* Adding a zero as the highest coefficient does not change the parity of the sign changes. (Contributed by Thierry Arnoux, 12-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   &    |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
 0..^ ( # `  f
 ) )  |->  ( W 
 gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( f `  i
 ) ) ) ) ) )   &    |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f ) ) if ( ( ( T `
  f ) `  j )  =/=  (
 ( T `  f
 ) `  ( j  -  1 ) ) ,  1 ,  0 ) )   =>    |-  ( ( F  e.  (Word  RR  \  { (/) } )  /\  ( F `  0
 )  =/=  0 )  ->  ( V `  ( F ++  <" 0 "> ) )  =  ( V `  F ) )
 
Theoremsignshf 30665*  H, corresponding to the word  F multiplied by  ( x  -  C ), as a function. (Contributed by Thierry Arnoux, 29-Sep-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   &    |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
 0..^ ( # `  f
 ) )  |->  ( W 
 gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( f `  i
 ) ) ) ) ) )   &    |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f ) ) if ( ( ( T `
  f ) `  j )  =/=  (
 ( T `  f
 ) `  ( j  -  1 ) ) ,  1 ,  0 ) )   &    |-  H  =  ( ( <" 0 "> ++  F )  oF  -  ( ( F ++  <" 0 "> )𝑓/𝑐  x.  C ) )   =>    |-  ( ( F  e. Word  RR 
 /\  C  e.  RR+ )  ->  H : ( 0..^ ( ( # `  F )  +  1 ) ) --> RR )
 
Theoremsignshwrd 30666*  H, corresponding to the word  F multiplied by  ( x  -  C ), is a word. (Contributed by Thierry Arnoux, 29-Sep-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   &    |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
 0..^ ( # `  f
 ) )  |->  ( W 
 gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( f `  i
 ) ) ) ) ) )   &    |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f ) ) if ( ( ( T `
  f ) `  j )  =/=  (
 ( T `  f
 ) `  ( j  -  1 ) ) ,  1 ,  0 ) )   &    |-  H  =  ( ( <" 0 "> ++  F )  oF  -  ( ( F ++  <" 0 "> )𝑓/𝑐  x.  C ) )   =>    |-  ( ( F  e. Word  RR 
 /\  C  e.  RR+ )  ->  H  e. Word  RR )
 
Theoremsignshlen 30667* Length of  H, corresponding to the word  F multiplied by  ( x  -  C ). (Contributed by Thierry Arnoux, 14-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   &    |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
 0..^ ( # `  f
 ) )  |->  ( W 
 gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( f `  i
 ) ) ) ) ) )   &    |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f ) ) if ( ( ( T `
  f ) `  j )  =/=  (
 ( T `  f
 ) `  ( j  -  1 ) ) ,  1 ,  0 ) )   &    |-  H  =  ( ( <" 0 "> ++  F )  oF  -  ( ( F ++  <" 0 "> )𝑓/𝑐  x.  C ) )   =>    |-  ( ( F  e. Word  RR 
 /\  C  e.  RR+ )  ->  ( # `  H )  =  ( ( # `
  F )  +  1 ) )
 
Theoremsignshnz 30668*  H is not the empty word. (Contributed by Thierry Arnoux, 14-Oct-2018.)
 |-  .+^  =  ( a  e.  { -u 1 ,  0 ,  1 } ,  b  e. 
 { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b
 ) )   &    |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. , 
 <. ( +g  `  ndx ) ,  .+^  >. }   &    |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
 0..^ ( # `  f
 ) )  |->  ( W 
 gsumg  ( i  e.  (
 0 ... n )  |->  (sgn `  ( f `  i
 ) ) ) ) ) )   &    |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f ) ) if ( ( ( T `
  f ) `  j )  =/=  (
 ( T `  f
 ) `  ( j  -  1 ) ) ,  1 ,  0 ) )   &    |-  H  =  ( ( <" 0 "> ++  F )  oF  -  ( ( F ++  <" 0 "> )𝑓/𝑐  x.  C ) )   =>    |-  ( ( F  e. Word  RR 
 /\  C  e.  RR+ )  ->  H  =/=  (/) )
 
20.3.26  Number Theory
 
Theoremefcld 30669 Closure law for the exponential function, deduction version. (Contributed by Thierry Arnoux, 1-Dec-2021.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( exp `  A )  e. 
 CC )
 
Theoremiblidicc 30670* The identity function is integrable on any closed interval. (Contributed by Thierry Arnoux, 13-Dec-2021.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( x  e.  ( A [,] B )  |->  x )  e.  L^1 )
 
Theoremrpsqrtcn 30671 Continuity of the real positive square root function. (Contributed by Thierry Arnoux, 20-Dec-2021.)
 |-  ( sqr  |`  RR+ )  e.  ( RR+ -cn-> RR+ )
 
Theoremdivsqrtid 30672 A real number divided by its square root. (Contributed by Thierry Arnoux, 1-Jan-2022.)
 |-  ( A  e.  RR+  ->  ( A  /  ( sqr `  A ) )  =  ( sqr `  A ) )
 
Theoremcxpcncf1 30673* The power function on complex numbers, for fixed exponent A, is continuous. Similar to cxpcn 24486. (Contributed by Thierry Arnoux, 20-Dec-2021.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  D  C_  ( CC  \  ( -oo (,] 0 ) ) )   =>    |-  ( ph  ->  ( x  e.  D  |->  ( x 
 ^c  A ) )  e.  ( D
 -cn-> CC ) )
 
Theoremefmul2picn 30674* Multiplying by  ( _i  x.  ( 2  x.  pi ) ) and taking the exponential preserves continuity. (Contributed by Thierry Arnoux, 13-Dec-2021.)
 |-  ( ph  ->  ( x  e.  A  |->  B )  e.  ( A -cn-> CC )
 )   =>    |-  ( ph  ->  ( x  e.  A  |->  ( exp `  ( ( _i  x.  ( 2  x.  pi ) )  x.  B ) ) )  e.  ( A -cn-> CC )
 )
 
Theoremfct2relem 30675 Lemma for ftc2re 30676. (Contributed by Thierry Arnoux, 20-Dec-2021.)
 |-  E  =  ( C (,) D )   &    |-  ( ph  ->  A  e.  E )   &    |-  ( ph  ->  B  e.  E )   =>    |-  ( ph  ->  ( A [,] B ) 
 C_  E )
 
Theoremftc2re 30676* The Fundamental Theorem of Calculus, part two, for functions continuous on  D. (Contributed by Thierry Arnoux, 1-Dec-2021.)
 |-  E  =  ( C (,) D )   &    |-  ( ph  ->  A  e.  E )   &    |-  ( ph  ->  B  e.  E )   &    |-  ( ph  ->  A  <_  B )   &    |-  ( ph  ->  F : E --> CC )   &    |-  ( ph  ->  ( RR  _D  F )  e.  ( E -cn-> CC ) )   =>    |-  ( ph  ->  S. ( A (,) B ) ( ( RR 
 _D  F ) `  t )  _d t  =  ( ( F `  B )  -  ( F `  A ) ) )
 
Theoremfdvposlt 30677* Functions with a positive derivative, i.e. monotonously growing functions, preserve strict ordering. (Contributed by Thierry Arnoux, 20-Dec-2021.)
 |-  E  =  ( C (,) D )   &    |-  ( ph  ->  A  e.  E )   &    |-  ( ph  ->  B  e.  E )   &    |-  ( ph  ->  F : E --> RR )   &    |-  ( ph  ->  ( RR  _D  F )  e.  ( E -cn-> RR ) )   &    |-  ( ph  ->  A  <  B )   &    |-  (
 ( ph  /\  x  e.  ( A (,) B ) )  ->  0  < 
 ( ( RR  _D  F ) `  x ) )   =>    |-  ( ph  ->  ( F `  A )  < 
 ( F `  B ) )
 
Theoremfdvneggt 30678* Functions with a negative derivative, i.e. monotonously decreasing functions, inverse strict ordering. (Contributed by Thierry Arnoux, 20-Dec-2021.)
 |-  E  =  ( C (,) D )   &    |-  ( ph  ->  A  e.  E )   &    |-  ( ph  ->  B  e.  E )   &    |-  ( ph  ->  F : E --> RR )   &    |-  ( ph  ->  ( RR  _D  F )  e.  ( E -cn-> RR ) )   &    |-  ( ph  ->  A  <  B )   &    |-  (
 ( ph  /\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `
  x )  < 
 0 )   =>    |-  ( ph  ->  ( F `  B )  < 
 ( F `  A ) )
 
Theoremfdvposle 30679* Functions with a nonnegative derivative, i.e. monotonously growing functions, preserve ordering. (Contributed by Thierry Arnoux, 20-Dec-2021.)
 |-  E  =  ( C (,) D )   &    |-  ( ph  ->  A  e.  E )   &    |-  ( ph  ->  B  e.  E )   &    |-  ( ph  ->  F : E --> RR )   &    |-  ( ph  ->  ( RR  _D  F )  e.  ( E -cn-> RR ) )   &    |-  ( ph  ->  A 
 <_  B )   &    |-  ( ( ph  /\  x  e.  ( A (,) B ) ) 
 ->  0  <_  ( ( RR  _D  F ) `
  x ) )   =>    |-  ( ph  ->  ( F `  A )  <_  ( F `  B ) )
 
Theoremfdvnegge 30680* Functions with a non-positive derivative, i.e. decreasing functions, preserve ordering. (Contributed by Thierry Arnoux, 20-Dec-2021.)
 |-  E  =  ( C (,) D )   &    |-  ( ph  ->  A  e.  E )   &    |-  ( ph  ->  B  e.  E )   &    |-  ( ph  ->  F : E --> RR )   &    |-  ( ph  ->  ( RR  _D  F )  e.  ( E -cn-> RR ) )   &    |-  ( ph  ->  A 
 <_  B )   &    |-  ( ( ph  /\  x  e.  ( A (,) B ) ) 
 ->  ( ( RR  _D  F ) `  x )  <_  0 )   =>    |-  ( ph  ->  ( F `  B ) 
 <_  ( F `  A ) )
 
Theoremprodfzo03 30681* A product of three factors, indexed starting with zero. (Contributed by Thierry Arnoux, 14-Dec-2021.)
 |-  (
 k  =  0  ->  D  =  A )   &    |-  (
 k  =  1  ->  D  =  B )   &    |-  (
 k  =  2  ->  D  =  C )   &    |-  (
 ( ph  /\  k  e.  ( 0..^ 3 ) )  ->  D  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  ( 0..^ 3 ) D  =  ( A  x.  ( B  x.  C ) ) )
 
Theoremactfunsnf1o 30682* The action  F of extending function from  B to  C with new values at point  I is a bijection. (Contributed by Thierry Arnoux, 9-Dec-2021.)
 |-  (
 ( ph  /\  k  e.  C )  ->  A  C_  ( C  ^m  B ) )   &    |-  ( ph  ->  C  e.  _V )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  -.  I  e.  B )   &    |-  F  =  ( x  e.  A  |->  ( x  u.  { <. I ,  k >. } )
 )   =>    |-  ( ( ph  /\  k  e.  C )  ->  F : A -1-1-onto-> ran  F )
 
Theoremactfunsnrndisj 30683* The action  F of extending function from  B to  C with new values at point  I yields different functions. (Contributed by Thierry Arnoux, 9-Dec-2021.)
 |-  (
 ( ph  /\  k  e.  C )  ->  A  C_  ( C  ^m  B ) )   &    |-  ( ph  ->  C  e.  _V )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  -.  I  e.  B )   &    |-  F  =  ( x  e.  A  |->  ( x  u.  { <. I ,  k >. } )
 )   =>    |-  ( ph  -> Disj  k  e.  C  ran  F )
 
Theoremitgexpif 30684* The basis for the circle method in the form of trigonometric sums. Proposition of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 2-Dec-2021.)
 |-  ( N  e.  ZZ  ->  S. ( 0 (,) 1
 ) ( exp `  (
 ( _i  x.  (
 2  x.  pi ) )  x.  ( N  x.  x ) ) )  _d x  =  if ( N  =  0 ,  1 , 
 0 ) )
 
Theoremfsum2dsub 30685* Lemma for breprexp 30711- Re-index a double sum, using difference of the initial indices. (Contributed by Thierry Arnoux, 7-Dec-2021.)
 |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( i  =  ( k  -  j
 )  ->  A  =  B )   &    |-  ( ( ph  /\  i  e.  ( ZZ>= `  -u j )  /\  j  e.  ( 1 ... N ) )  ->  A  e.  CC )   &    |-  ( ( (
 ph  /\  j  e.  ( 1 ... N ) )  /\  k  e.  ( ( ( M  +  j )  +  1 ) ... ( M  +  N )
 ) )  ->  B  =  0 )   &    |-  (
 ( ( ph  /\  j  e.  ( 1 ... N ) )  /\  k  e.  ( 0..^ j ) )  ->  B  =  0 )   =>    |-  ( ph  ->  sum_ i  e.  ( 0 ... M ) sum_ j  e.  (
 1 ... N ) A  =  sum_ k  e.  (
 0 ... ( M  +  N ) ) sum_ j  e.  ( 1 ...
 N ) B )
 
20.3.26.1  Representations of a number as sums of integers
 
Syntaxcrepr 30686 Representations of a number as a sum of nonnegative integers.
 class repr
 
Definitiondf-repr 30687* The representations of a nonnegative 
m as the sum of  s nonnegative integers from a set  b. Cf. Definition of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 1-Dec-2021.)
 |- repr  =  ( s  e.  NN0  |->  ( b  e.  ~P NN ,  m  e.  ZZ  |->  { c  e.  ( b  ^m  (
 0..^ s ) )  |  sum_ a  e.  (
 0..^ s ) ( c `  a )  =  m } )
 )
 
Theoremreprval 30688* Value of the representations of  M as the sum of  S nonnegative integers in a given set  A (Contributed by Thierry Arnoux, 1-Dec-2021.)
 |-  ( ph  ->  A  C_  NN )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  S  e.  NN0 )   =>    |-  ( ph  ->  ( A (repr `  S ) M )  =  {
 c  e.  ( A 
 ^m  ( 0..^ S ) )  |  sum_ a  e.  ( 0..^ S ) ( c `  a
 )  =  M }
 )
 
Theoremrepr0 30689 There is exactly one representation with no elements (an empty sum), only for  M  =  0. (Contributed by Thierry Arnoux, 2-Dec-2021.)
 |-  ( ph  ->  A  C_  NN )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  S  e.  NN0 )   =>    |-  ( ph  ->  ( A (repr `  0 ) M )  =  if ( M  =  0 ,  { (/) } ,  (/) ) )
 
Theoremreprf 30690 Members of the representation of  M as the sum of  S nonnegative integers from set  A as functions. (Contributed by Thierry Arnoux, 5-Dec-2021.)
 |-  ( ph  ->  A  C_  NN )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  S  e.  NN0 )   &    |-  ( ph  ->  C  e.  ( A (repr `  S ) M ) )   =>    |-  ( ph  ->  C : ( 0..^ S )
 --> A )
 
Theoremreprsum 30691* Sums of values of the members of the representation of  M equal  M. (Contributed by Thierry Arnoux, 5-Dec-2021.)
 |-  ( ph  ->  A  C_  NN )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  S  e.  NN0 )   &    |-  ( ph  ->  C  e.  ( A (repr `  S ) M ) )   =>    |-  ( ph  ->  sum_ a  e.  ( 0..^ S ) ( C `  a
 )  =  M )
 
Theoremreprle 30692 Upper bound to the terms in the representations of  M as the sum of  S nonnegative integers from set  A. (Contributed by Thierry Arnoux, 27-Dec-2021.)
 |-  ( ph  ->  A  C_  NN )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  S  e.  NN0 )   &    |-  ( ph  ->  C  e.  ( A (repr `  S ) M ) )   &    |-  ( ph  ->  X  e.  ( 0..^ S ) )   =>    |-  ( ph  ->  ( C `  X )  <_  M )
 
Theoremreprsuc 30693* Express the representations recursively. (Contributed by Thierry Arnoux, 5-Dec-2021.)
 |-  ( ph  ->  A  C_  NN )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  S  e.  NN0 )   &    |-  F  =  ( c  e.  ( A (repr `  S )
 ( M  -  b
 ) )  |->  ( c  u.  { <. S ,  b >. } ) )   =>    |-  ( ph  ->  ( A (repr `  ( S  +  1 ) ) M )  =  U_ b  e.  A  ran  F )
 
Theoremreprfi 30694 Bounded representations are finite sets. (Contributed by Thierry Arnoux, 7-Dec-2021.)
 |-  ( ph  ->  A  C_  NN )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  S  e.  NN0 )   &    |-  ( ph  ->  A  e.  Fin )   =>    |-  ( ph  ->  ( A (repr `  S ) M )  e.  Fin )
 
Theoremreprss 30695 Representations with terms in a subset. (Contributed by Thierry Arnoux, 11-Dec-2021.)
 |-  ( ph  ->  A  C_  NN )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  S  e.  NN0 )   &    |-  ( ph  ->  B 
 C_  A )   =>    |-  ( ph  ->  ( B (repr `  S ) M )  C_  ( A (repr `  S ) M ) )
 
Theoremreprinrn 30696* Representations with term in an intersection. (Contributed by Thierry Arnoux, 11-Dec-2021.)
 |-  ( ph  ->  A  C_  NN )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  S  e.  NN0 )   =>    |-  ( ph  ->  (
 c  e.  ( ( A  i^i  B ) (repr `  S ) M )  <->  ( c  e.  ( A (repr `  S ) M ) 
 /\  ran  c  C_  B ) ) )
 
Theoremreprlt 30697 There are no representations of  M with more than  M terms. Remark of [Nathanson] p. 123 (Contributed by Thierry Arnoux, 7-Dec-2021.)
 |-  ( ph  ->  A  C_  NN )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  S  e.  NN0 )   &    |-  ( ph  ->  M  <  S )   =>    |-  ( ph  ->  ( A (repr `  S ) M )  =  (/) )
 
Theoremhashreprin 30698* Express a sum of representations over an intersection using a product of the indicator function (Contributed by Thierry Arnoux, 11-Dec-2021.)
 |-  ( ph  ->  A  C_  NN )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  S  e.  NN0 )   &    |-  ( ph  ->  B  e.  Fin )   &    |-  ( ph  ->  B  C_  NN )   =>    |-  ( ph  ->  ( # `
  ( ( A  i^i  B ) (repr `  S ) M ) )  =  sum_ c  e.  ( B (repr `  S ) M )
 prod_ a  e.  (
 0..^ S ) ( ( (𝟭 `  NN ) `  A ) `  ( c `  a
 ) ) )
 
Theoremreprgt 30699 There are no representations of more than  ( S  x.  N
) with only  S terms bounded by  N. Remark of [Nathanson] p. 123 (Contributed by Thierry Arnoux, 7-Dec-2021.)
 |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  A  C_  ( 1 ... N ) )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  S  e.  NN0 )   &    |-  ( ph  ->  ( S  x.  N )  <  M )   =>    |-  ( ph  ->  ( A (repr `  S ) M )  =  (/) )
 
Theoremreprinfz1 30700 For the representation of  N, it is sufficient to consider nonnegative integers up to 
N. Remark of [Nathanson] p. 123 (Contributed by Thierry Arnoux, 13-Dec-2021.)
 |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  S  e.  NN0 )   &    |-  ( ph  ->  A 
 C_  NN )   =>    |-  ( ph  ->  ( A (repr `  S ) N )  =  (
 ( A  i^i  (
 1 ... N ) ) (repr `  S ) N ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >