Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signswmnd Structured version   Visualization version   Unicode version

Theorem signswmnd 30634
Description:  W is a monoid structure on  { -u
1 ,  0 ,  1 } which operation retains the right side, but skips zeroes. This will be used for skipping zeroes when counting sign changes. (Contributed by Thierry Arnoux, 9-Sep-2018.)
Hypotheses
Ref Expression
signsw.p  |-  .+^  =  ( a  e.  { -u
1 ,  0 ,  1 } ,  b  e.  { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b ) )
signsw.w  |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. ,  <. ( +g  `  ndx ) , 
.+^  >. }
Assertion
Ref Expression
signswmnd  |-  W  e. 
Mnd
Distinct variable group:    a, b,  .+^
Allowed substitution hints:    W( a, b)

Proof of Theorem signswmnd
Dummy variables  u  e  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 signsw.p . . . . . 6  |-  .+^  =  ( a  e.  { -u
1 ,  0 ,  1 } ,  b  e.  { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b ) )
21signspval 30629 . . . . 5  |-  ( ( u  e.  { -u
1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 } )  ->  ( u  .+^  v )  =  if ( v  =  0 ,  u ,  v ) )
3 ifcl 4130 . . . . 5  |-  ( ( u  e.  { -u
1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 } )  ->  if (
v  =  0 ,  u ,  v )  e.  { -u 1 ,  0 ,  1 } )
42, 3eqeltrd 2701 . . . 4  |-  ( ( u  e.  { -u
1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 } )  ->  ( u  .+^  v )  e.  { -u 1 ,  0 ,  1 } )
51signspval 30629 . . . . . . . . . . . . 13  |-  ( ( ( u  .+^  v )  e.  { -u 1 ,  0 ,  1 }  /\  w  e. 
{ -u 1 ,  0 ,  1 } )  ->  ( ( u 
.+^  v )  .+^  w )  =  if ( w  =  0 ,  ( u  .+^  v ) ,  w
) )
64, 5stoic3 1701 . . . . . . . . . . . 12  |-  ( ( u  e.  { -u
1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e.  { -u 1 ,  0 ,  1 } )  -> 
( ( u  .+^  v )  .+^  w )  =  if ( w  =  0 ,  ( u  .+^  v ) ,  w ) )
7 iftrue 4092 . . . . . . . . . . . 12  |-  ( w  =  0  ->  if ( w  =  0 ,  ( u  .+^  v ) ,  w
)  =  ( u 
.+^  v ) )
86, 7sylan9eq 2676 . . . . . . . . . . 11  |-  ( ( ( u  e.  { -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e.  { -u 1 ,  0 ,  1 } )  /\  w  =  0 )  ->  ( ( u 
.+^  v )  .+^  w )  =  ( u  .+^  v )
)
98adantr 481 . . . . . . . . . 10  |-  ( ( ( ( u  e. 
{ -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e. 
{ -u 1 ,  0 ,  1 } )  /\  w  =  0 )  /\  v  =  0 )  ->  (
( u  .+^  v ) 
.+^  w )  =  ( u  .+^  v ) )
1023adant3 1081 . . . . . . . . . . 11  |-  ( ( u  e.  { -u
1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e.  { -u 1 ,  0 ,  1 } )  -> 
( u  .+^  v )  =  if ( v  =  0 ,  u ,  v ) )
1110ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( u  e. 
{ -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e. 
{ -u 1 ,  0 ,  1 } )  /\  w  =  0 )  /\  v  =  0 )  ->  (
u  .+^  v )  =  if ( v  =  0 ,  u ,  v ) )
12 iftrue 4092 . . . . . . . . . . 11  |-  ( v  =  0  ->  if ( v  =  0 ,  u ,  v )  =  u )
1312adantl 482 . . . . . . . . . 10  |-  ( ( ( ( u  e. 
{ -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e. 
{ -u 1 ,  0 ,  1 } )  /\  w  =  0 )  /\  v  =  0 )  ->  if ( v  =  0 ,  u ,  v )  =  u )
149, 11, 133eqtrd 2660 . . . . . . . . 9  |-  ( ( ( ( u  e. 
{ -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e. 
{ -u 1 ,  0 ,  1 } )  /\  w  =  0 )  /\  v  =  0 )  ->  (
( u  .+^  v ) 
.+^  w )  =  u )
15 simp1 1061 . . . . . . . . . . . 12  |-  ( ( u  e.  { -u
1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e.  { -u 1 ,  0 ,  1 } )  ->  u  e.  { -u 1 ,  0 ,  1 } )
161signspval 30629 . . . . . . . . . . . . . 14  |-  ( ( v  e.  { -u
1 ,  0 ,  1 }  /\  w  e.  { -u 1 ,  0 ,  1 } )  ->  ( v  .+^  w )  =  if ( w  =  0 ,  v ,  w
) )
17163adant1 1079 . . . . . . . . . . . . 13  |-  ( ( u  e.  { -u
1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e.  { -u 1 ,  0 ,  1 } )  -> 
( v  .+^  w )  =  if ( w  =  0 ,  v ,  w ) )
18 simpl2 1065 . . . . . . . . . . . . . 14  |-  ( ( ( u  e.  { -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e.  { -u 1 ,  0 ,  1 } )  /\  w  =  0 )  ->  v  e.  { -u 1 ,  0 ,  1 } )
19 simpl3 1066 . . . . . . . . . . . . . 14  |-  ( ( ( u  e.  { -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e.  { -u 1 ,  0 ,  1 } )  /\  -.  w  =  0
)  ->  w  e.  {
-u 1 ,  0 ,  1 } )
2018, 19ifclda 4120 . . . . . . . . . . . . 13  |-  ( ( u  e.  { -u
1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e.  { -u 1 ,  0 ,  1 } )  ->  if ( w  =  0 ,  v ,  w
)  e.  { -u
1 ,  0 ,  1 } )
2117, 20eqeltrd 2701 . . . . . . . . . . . 12  |-  ( ( u  e.  { -u
1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e.  { -u 1 ,  0 ,  1 } )  -> 
( v  .+^  w )  e.  { -u 1 ,  0 ,  1 } )
221signspval 30629 . . . . . . . . . . . 12  |-  ( ( u  e.  { -u
1 ,  0 ,  1 }  /\  (
v  .+^  w )  e. 
{ -u 1 ,  0 ,  1 } )  ->  ( u  .+^  ( v  .+^  w ) )  =  if ( ( v  .+^  w )  =  0 ,  u ,  ( v  .+^  w ) ) )
2315, 21, 22syl2anc 693 . . . . . . . . . . 11  |-  ( ( u  e.  { -u
1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e.  { -u 1 ,  0 ,  1 } )  -> 
( u  .+^  ( v 
.+^  w ) )  =  if ( ( v  .+^  w )  =  0 ,  u ,  ( v  .+^  w ) ) )
2423ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( u  e. 
{ -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e. 
{ -u 1 ,  0 ,  1 } )  /\  w  =  0 )  /\  v  =  0 )  ->  (
u  .+^  ( v  .+^  w ) )  =  if ( ( v 
.+^  w )  =  0 ,  u ,  ( v  .+^  w ) ) )
25 iftrue 4092 . . . . . . . . . . . . 13  |-  ( w  =  0  ->  if ( w  =  0 ,  v ,  w
)  =  v )
2617, 25sylan9eq 2676 . . . . . . . . . . . 12  |-  ( ( ( u  e.  { -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e.  { -u 1 ,  0 ,  1 } )  /\  w  =  0 )  ->  ( v  .+^  w )  =  v )
27 id 22 . . . . . . . . . . . 12  |-  ( v  =  0  ->  v  =  0 )
2826, 27sylan9eq 2676 . . . . . . . . . . 11  |-  ( ( ( ( u  e. 
{ -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e. 
{ -u 1 ,  0 ,  1 } )  /\  w  =  0 )  /\  v  =  0 )  ->  (
v  .+^  w )  =  0 )
2928iftrued 4094 . . . . . . . . . 10  |-  ( ( ( ( u  e. 
{ -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e. 
{ -u 1 ,  0 ,  1 } )  /\  w  =  0 )  /\  v  =  0 )  ->  if ( ( v  .+^  w )  =  0 ,  u ,  ( v  .+^  w )
)  =  u )
3024, 29eqtrd 2656 . . . . . . . . 9  |-  ( ( ( ( u  e. 
{ -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e. 
{ -u 1 ,  0 ,  1 } )  /\  w  =  0 )  /\  v  =  0 )  ->  (
u  .+^  ( v  .+^  w ) )  =  u )
3114, 30eqtr4d 2659 . . . . . . . 8  |-  ( ( ( ( u  e. 
{ -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e. 
{ -u 1 ,  0 ,  1 } )  /\  w  =  0 )  /\  v  =  0 )  ->  (
( u  .+^  v ) 
.+^  w )  =  ( u  .+^  ( v 
.+^  w ) ) )
326ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( u  e. 
{ -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e. 
{ -u 1 ,  0 ,  1 } )  /\  w  =  0 )  /\  -.  v  =  0 )  -> 
( ( u  .+^  v )  .+^  w )  =  if ( w  =  0 ,  ( u  .+^  v ) ,  w ) )
337ad2antlr 763 . . . . . . . . . 10  |-  ( ( ( ( u  e. 
{ -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e. 
{ -u 1 ,  0 ,  1 } )  /\  w  =  0 )  /\  -.  v  =  0 )  ->  if ( w  =  0 ,  ( u  .+^  v ) ,  w
)  =  ( u 
.+^  v ) )
3410ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( u  e. 
{ -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e. 
{ -u 1 ,  0 ,  1 } )  /\  w  =  0 )  /\  -.  v  =  0 )  -> 
( u  .+^  v )  =  if ( v  =  0 ,  u ,  v ) )
35 iffalse 4095 . . . . . . . . . . . 12  |-  ( -.  v  =  0  ->  if ( v  =  0 ,  u ,  v )  =  v )
3635adantl 482 . . . . . . . . . . 11  |-  ( ( ( ( u  e. 
{ -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e. 
{ -u 1 ,  0 ,  1 } )  /\  w  =  0 )  /\  -.  v  =  0 )  ->  if ( v  =  0 ,  u ,  v )  =  v )
3734, 36eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( ( u  e. 
{ -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e. 
{ -u 1 ,  0 ,  1 } )  /\  w  =  0 )  /\  -.  v  =  0 )  -> 
( u  .+^  v )  =  v )
3832, 33, 373eqtrd 2660 . . . . . . . . 9  |-  ( ( ( ( u  e. 
{ -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e. 
{ -u 1 ,  0 ,  1 } )  /\  w  =  0 )  /\  -.  v  =  0 )  -> 
( ( u  .+^  v )  .+^  w )  =  v )
3923ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( u  e. 
{ -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e. 
{ -u 1 ,  0 ,  1 } )  /\  w  =  0 )  /\  -.  v  =  0 )  -> 
( u  .+^  ( v 
.+^  w ) )  =  if ( ( v  .+^  w )  =  0 ,  u ,  ( v  .+^  w ) ) )
40 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( u  e. 
{ -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e. 
{ -u 1 ,  0 ,  1 } )  /\  w  =  0 )  /\  -.  v  =  0 )  ->  -.  v  =  0
)
4117ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( u  e. 
{ -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e. 
{ -u 1 ,  0 ,  1 } )  /\  w  =  0 )  /\  -.  v  =  0 )  -> 
( v  .+^  w )  =  if ( w  =  0 ,  v ,  w ) )
4225ad2antlr 763 . . . . . . . . . . . . . 14  |-  ( ( ( ( u  e. 
{ -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e. 
{ -u 1 ,  0 ,  1 } )  /\  w  =  0 )  /\  -.  v  =  0 )  ->  if ( w  =  0 ,  v ,  w
)  =  v )
4341, 42eqtrd 2656 . . . . . . . . . . . . 13  |-  ( ( ( ( u  e. 
{ -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e. 
{ -u 1 ,  0 ,  1 } )  /\  w  =  0 )  /\  -.  v  =  0 )  -> 
( v  .+^  w )  =  v )
4443eqeq1d 2624 . . . . . . . . . . . 12  |-  ( ( ( ( u  e. 
{ -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e. 
{ -u 1 ,  0 ,  1 } )  /\  w  =  0 )  /\  -.  v  =  0 )  -> 
( ( v  .+^  w )  =  0  <-> 
v  =  0 ) )
4540, 44mtbird 315 . . . . . . . . . . 11  |-  ( ( ( ( u  e. 
{ -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e. 
{ -u 1 ,  0 ,  1 } )  /\  w  =  0 )  /\  -.  v  =  0 )  ->  -.  ( v  .+^  w )  =  0 )
4645iffalsed 4097 . . . . . . . . . 10  |-  ( ( ( ( u  e. 
{ -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e. 
{ -u 1 ,  0 ,  1 } )  /\  w  =  0 )  /\  -.  v  =  0 )  ->  if ( ( v  .+^  w )  =  0 ,  u ,  ( v  .+^  w )
)  =  ( v 
.+^  w ) )
4739, 46, 433eqtrd 2660 . . . . . . . . 9  |-  ( ( ( ( u  e. 
{ -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e. 
{ -u 1 ,  0 ,  1 } )  /\  w  =  0 )  /\  -.  v  =  0 )  -> 
( u  .+^  ( v 
.+^  w ) )  =  v )
4838, 47eqtr4d 2659 . . . . . . . 8  |-  ( ( ( ( u  e. 
{ -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e. 
{ -u 1 ,  0 ,  1 } )  /\  w  =  0 )  /\  -.  v  =  0 )  -> 
( ( u  .+^  v )  .+^  w )  =  ( u  .+^  ( v  .+^  w ) ) )
4931, 48pm2.61dan 832 . . . . . . 7  |-  ( ( ( u  e.  { -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e.  { -u 1 ,  0 ,  1 } )  /\  w  =  0 )  ->  ( ( u 
.+^  v )  .+^  w )  =  ( u  .+^  ( v  .+^  w ) ) )
50 iffalse 4095 . . . . . . . . 9  |-  ( -.  w  =  0  ->  if ( w  =  0 ,  ( u  .+^  v ) ,  w
)  =  w )
516, 50sylan9eq 2676 . . . . . . . 8  |-  ( ( ( u  e.  { -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e.  { -u 1 ,  0 ,  1 } )  /\  -.  w  =  0
)  ->  ( (
u  .+^  v )  .+^  w )  =  w )
5223adantr 481 . . . . . . . . 9  |-  ( ( ( u  e.  { -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e.  { -u 1 ,  0 ,  1 } )  /\  -.  w  =  0
)  ->  ( u  .+^  ( v  .+^  w ) )  =  if ( ( v  .+^  w )  =  0 ,  u ,  ( v  .+^  w ) ) )
53 simpr 477 . . . . . . . . . . 11  |-  ( ( ( u  e.  { -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e.  { -u 1 ,  0 ,  1 } )  /\  -.  w  =  0
)  ->  -.  w  =  0 )
54 iffalse 4095 . . . . . . . . . . . . 13  |-  ( -.  w  =  0  ->  if ( w  =  0 ,  v ,  w
)  =  w )
5517, 54sylan9eq 2676 . . . . . . . . . . . 12  |-  ( ( ( u  e.  { -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e.  { -u 1 ,  0 ,  1 } )  /\  -.  w  =  0
)  ->  ( v  .+^  w )  =  w )
5655eqeq1d 2624 . . . . . . . . . . 11  |-  ( ( ( u  e.  { -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e.  { -u 1 ,  0 ,  1 } )  /\  -.  w  =  0
)  ->  ( (
v  .+^  w )  =  0  <->  w  =  0
) )
5753, 56mtbird 315 . . . . . . . . . 10  |-  ( ( ( u  e.  { -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e.  { -u 1 ,  0 ,  1 } )  /\  -.  w  =  0
)  ->  -.  (
v  .+^  w )  =  0 )
5857iffalsed 4097 . . . . . . . . 9  |-  ( ( ( u  e.  { -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e.  { -u 1 ,  0 ,  1 } )  /\  -.  w  =  0
)  ->  if (
( v  .+^  w )  =  0 ,  u ,  ( v  .+^  w ) )  =  ( v  .+^  w ) )
5952, 58, 553eqtrd 2660 . . . . . . . 8  |-  ( ( ( u  e.  { -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e.  { -u 1 ,  0 ,  1 } )  /\  -.  w  =  0
)  ->  ( u  .+^  ( v  .+^  w ) )  =  w )
6051, 59eqtr4d 2659 . . . . . . 7  |-  ( ( ( u  e.  { -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e.  { -u 1 ,  0 ,  1 } )  /\  -.  w  =  0
)  ->  ( (
u  .+^  v )  .+^  w )  =  ( u  .+^  ( v  .+^  w ) ) )
6149, 60pm2.61dan 832 . . . . . 6  |-  ( ( u  e.  { -u
1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 }  /\  w  e.  { -u 1 ,  0 ,  1 } )  -> 
( ( u  .+^  v )  .+^  w )  =  ( u  .+^  ( v  .+^  w ) ) )
62613expa 1265 . . . . 5  |-  ( ( ( u  e.  { -u 1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 } )  /\  w  e. 
{ -u 1 ,  0 ,  1 } )  ->  ( ( u 
.+^  v )  .+^  w )  =  ( u  .+^  ( v  .+^  w ) ) )
6362ralrimiva 2966 . . . 4  |-  ( ( u  e.  { -u
1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 } )  ->  A. w  e.  { -u 1 ,  0 ,  1 }  ( ( u  .+^  v )  .+^  w )  =  ( u  .+^  ( v  .+^  w ) ) )
644, 63jca 554 . . 3  |-  ( ( u  e.  { -u
1 ,  0 ,  1 }  /\  v  e.  { -u 1 ,  0 ,  1 } )  ->  ( (
u  .+^  v )  e. 
{ -u 1 ,  0 ,  1 }  /\  A. w  e.  { -u
1 ,  0 ,  1 }  ( ( u  .+^  v )  .+^  w )  =  ( u  .+^  ( v  .+^  w ) ) ) )
6564rgen2a 2977 . 2  |-  A. u  e.  { -u 1 ,  0 ,  1 } A. v  e.  { -u 1 ,  0 ,  1 }  ( ( u  .+^  v )  e.  { -u 1 ,  0 ,  1 }  /\  A. w  e. 
{ -u 1 ,  0 ,  1 }  (
( u  .+^  v ) 
.+^  w )  =  ( u  .+^  ( v 
.+^  w ) ) )
66 c0ex 10034 . . . 4  |-  0  e.  _V
6766tpid2 4304 . . 3  |-  0  e.  { -u 1 ,  0 ,  1 }
681signsw0glem 30630 . . 3  |-  A. u  e.  { -u 1 ,  0 ,  1 }  ( ( 0  .+^  u )  =  u  /\  ( u  .+^  0 )  =  u )
69 oveq1 6657 . . . . . . 7  |-  ( e  =  0  ->  (
e  .+^  u )  =  ( 0  .+^  u ) )
7069eqeq1d 2624 . . . . . 6  |-  ( e  =  0  ->  (
( e  .+^  u )  =  u  <->  ( 0 
.+^  u )  =  u ) )
71 oveq2 6658 . . . . . . 7  |-  ( e  =  0  ->  (
u  .+^  e )  =  ( u  .+^  0
) )
7271eqeq1d 2624 . . . . . 6  |-  ( e  =  0  ->  (
( u  .+^  e )  =  u  <->  ( u  .+^  0 )  =  u ) )
7370, 72anbi12d 747 . . . . 5  |-  ( e  =  0  ->  (
( ( e  .+^  u )  =  u  /\  ( u  .+^  e )  =  u )  <->  ( ( 0 
.+^  u )  =  u  /\  ( u 
.+^  0 )  =  u ) ) )
7473ralbidv 2986 . . . 4  |-  ( e  =  0  ->  ( A. u  e.  { -u
1 ,  0 ,  1 }  ( ( e  .+^  u )  =  u  /\  (
u  .+^  e )  =  u )  <->  A. u  e.  { -u 1 ,  0 ,  1 }  ( ( 0  .+^  u )  =  u  /\  ( u  .+^  0 )  =  u ) ) )
7574rspcev 3309 . . 3  |-  ( ( 0  e.  { -u
1 ,  0 ,  1 }  /\  A. u  e.  { -u 1 ,  0 ,  1 }  ( ( 0 
.+^  u )  =  u  /\  ( u 
.+^  0 )  =  u ) )  ->  E. e  e.  { -u
1 ,  0 ,  1 } A. u  e.  { -u 1 ,  0 ,  1 }  ( ( e  .+^  u )  =  u  /\  ( u  .+^  e )  =  u ) )
7667, 68, 75mp2an 708 . 2  |-  E. e  e.  { -u 1 ,  0 ,  1 } A. u  e.  { -u 1 ,  0 ,  1 }  ( ( e  .+^  u )  =  u  /\  (
u  .+^  e )  =  u )
77 signsw.w . . . 4  |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. ,  <. ( +g  `  ndx ) , 
.+^  >. }
781, 77signswbase 30631 . . 3  |-  { -u
1 ,  0 ,  1 }  =  (
Base `  W )
791, 77signswplusg 30632 . . 3  |-  .+^  =  ( +g  `  W )
8078, 79ismnd 17297 . 2  |-  ( W  e.  Mnd  <->  ( A. u  e.  { -u 1 ,  0 ,  1 } A. v  e. 
{ -u 1 ,  0 ,  1 }  (
( u  .+^  v )  e.  { -u 1 ,  0 ,  1 }  /\  A. w  e.  { -u 1 ,  0 ,  1 }  ( ( u  .+^  v )  .+^  w )  =  ( u  .+^  ( v  .+^  w ) ) )  /\  E. e  e.  { -u 1 ,  0 ,  1 } A. u  e. 
{ -u 1 ,  0 ,  1 }  (
( e  .+^  u )  =  u  /\  (
u  .+^  e )  =  u ) ) )
8165, 76, 80mpbir2an 955 1  |-  W  e. 
Mnd
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   ifcif 4086   {cpr 4179   {ctp 4181   <.cop 4183   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   1c1 9937   -ucneg 10267   ndxcnx 15854   Basecbs 15857   +g cplusg 15941   Mndcmnd 17294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mgm 17242  df-sgrp 17284  df-mnd 17295
This theorem is referenced by:  signstcl  30642  signstf  30643  signstf0  30645  signstfvn  30646
  Copyright terms: Public domain W3C validator