Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signswn0 Structured version   Visualization version   Unicode version

Theorem signswn0 30637
Description: The zero-skipping operation propagages nonzeros. (Contributed by Thierry Arnoux, 11-Oct-2018.)
Hypotheses
Ref Expression
signsw.p  |-  .+^  =  ( a  e.  { -u
1 ,  0 ,  1 } ,  b  e.  { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b ) )
signsw.w  |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. ,  <. ( +g  `  ndx ) , 
.+^  >. }
Assertion
Ref Expression
signswn0  |-  ( ( ( X  e.  { -u 1 ,  0 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  /\  X  =/=  0 )  ->  ( X  .+^  Y )  =/=  0 )
Distinct variable groups:    a, b, X    Y, a, b
Allowed substitution hints:    .+^ ( a, b)    W( a, b)

Proof of Theorem signswn0
StepHypRef Expression
1 signsw.p . . . 4  |-  .+^  =  ( a  e.  { -u
1 ,  0 ,  1 } ,  b  e.  { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b ) )
21signspval 30629 . . 3  |-  ( ( X  e.  { -u
1 ,  0 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  ->  ( X  .+^ 
Y )  =  if ( Y  =  0 ,  X ,  Y
) )
32adantr 481 . 2  |-  ( ( ( X  e.  { -u 1 ,  0 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  /\  X  =/=  0 )  ->  ( X  .+^  Y )  =  if ( Y  =  0 ,  X ,  Y ) )
4 neeq1 2856 . . 3  |-  ( X  =  if ( Y  =  0 ,  X ,  Y )  ->  ( X  =/=  0  <->  if ( Y  =  0 ,  X ,  Y )  =/=  0 ) )
5 neeq1 2856 . . 3  |-  ( Y  =  if ( Y  =  0 ,  X ,  Y )  ->  ( Y  =/=  0  <->  if ( Y  =  0 ,  X ,  Y )  =/=  0 ) )
6 simplr 792 . . 3  |-  ( ( ( ( X  e. 
{ -u 1 ,  0 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  /\  X  =/=  0 )  /\  Y  =  0 )  ->  X  =/=  0 )
7 simpr 477 . . . 4  |-  ( ( ( ( X  e. 
{ -u 1 ,  0 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  /\  X  =/=  0 )  /\  -.  Y  =  0 )  ->  -.  Y  = 
0 )
87neqned 2801 . . 3  |-  ( ( ( ( X  e. 
{ -u 1 ,  0 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  /\  X  =/=  0 )  /\  -.  Y  =  0 )  ->  Y  =/=  0
)
94, 5, 6, 8ifbothda 4123 . 2  |-  ( ( ( X  e.  { -u 1 ,  0 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  /\  X  =/=  0 )  ->  if ( Y  =  0 ,  X ,  Y )  =/=  0 )
103, 9eqnetrd 2861 1  |-  ( ( ( X  e.  { -u 1 ,  0 ,  1 }  /\  Y  e.  { -u 1 ,  0 ,  1 } )  /\  X  =/=  0 )  ->  ( X  .+^  Y )  =/=  0 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   ifcif 4086   {cpr 4179   {ctp 4181   <.cop 4183   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   1c1 9937   -ucneg 10267   ndxcnx 15854   Basecbs 15857   +g cplusg 15941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  signstfvneq0  30649
  Copyright terms: Public domain W3C validator