Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdvs0 Structured version   Visualization version   Unicode version

Theorem slmdvs0 29778
Description: Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (hvmul0 27881 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmdvs0.f  |-  F  =  (Scalar `  W )
slmdvs0.s  |-  .x.  =  ( .s `  W )
slmdvs0.k  |-  K  =  ( Base `  F
)
slmdvs0.z  |-  .0.  =  ( 0g `  W )
Assertion
Ref Expression
slmdvs0  |-  ( ( W  e. SLMod  /\  X  e.  K )  ->  ( X  .x.  .0.  )  =  .0.  )

Proof of Theorem slmdvs0
StepHypRef Expression
1 slmdvs0.f . . . . 5  |-  F  =  (Scalar `  W )
21slmdsrg 29760 . . . 4  |-  ( W  e. SLMod  ->  F  e. SRing )
3 slmdvs0.k . . . . 5  |-  K  =  ( Base `  F
)
4 eqid 2622 . . . . 5  |-  ( .r
`  F )  =  ( .r `  F
)
5 eqid 2622 . . . . 5  |-  ( 0g
`  F )  =  ( 0g `  F
)
63, 4, 5srgrz 18526 . . . 4  |-  ( ( F  e. SRing  /\  X  e.  K )  ->  ( X ( .r `  F ) ( 0g
`  F ) )  =  ( 0g `  F ) )
72, 6sylan 488 . . 3  |-  ( ( W  e. SLMod  /\  X  e.  K )  ->  ( X ( .r `  F ) ( 0g
`  F ) )  =  ( 0g `  F ) )
87oveq1d 6665 . 2  |-  ( ( W  e. SLMod  /\  X  e.  K )  ->  (
( X ( .r
`  F ) ( 0g `  F ) )  .x.  .0.  )  =  ( ( 0g
`  F )  .x.  .0.  ) )
9 simpl 473 . . . 4  |-  ( ( W  e. SLMod  /\  X  e.  K )  ->  W  e. SLMod )
10 simpr 477 . . . 4  |-  ( ( W  e. SLMod  /\  X  e.  K )  ->  X  e.  K )
112adantr 481 . . . . 5  |-  ( ( W  e. SLMod  /\  X  e.  K )  ->  F  e. SRing )
123, 5srg0cl 18519 . . . . 5  |-  ( F  e. SRing  ->  ( 0g `  F )  e.  K
)
1311, 12syl 17 . . . 4  |-  ( ( W  e. SLMod  /\  X  e.  K )  ->  ( 0g `  F )  e.  K )
14 eqid 2622 . . . . . 6  |-  ( Base `  W )  =  (
Base `  W )
15 slmdvs0.z . . . . . 6  |-  .0.  =  ( 0g `  W )
1614, 15slmd0vcl 29774 . . . . 5  |-  ( W  e. SLMod  ->  .0.  e.  ( Base `  W ) )
1716adantr 481 . . . 4  |-  ( ( W  e. SLMod  /\  X  e.  K )  ->  .0.  e.  ( Base `  W
) )
18 slmdvs0.s . . . . 5  |-  .x.  =  ( .s `  W )
1914, 1, 18, 3, 4slmdvsass 29770 . . . 4  |-  ( ( W  e. SLMod  /\  ( X  e.  K  /\  ( 0g `  F )  e.  K  /\  .0.  e.  ( Base `  W
) ) )  -> 
( ( X ( .r `  F ) ( 0g `  F
) )  .x.  .0.  )  =  ( X  .x.  ( ( 0g `  F )  .x.  .0.  ) ) )
209, 10, 13, 17, 19syl13anc 1328 . . 3  |-  ( ( W  e. SLMod  /\  X  e.  K )  ->  (
( X ( .r
`  F ) ( 0g `  F ) )  .x.  .0.  )  =  ( X  .x.  ( ( 0g `  F )  .x.  .0.  ) ) )
2114, 1, 18, 5, 15slmd0vs 29777 . . . . 5  |-  ( ( W  e. SLMod  /\  .0.  e.  ( Base `  W )
)  ->  ( ( 0g `  F )  .x.  .0.  )  =  .0.  )
2217, 21syldan 487 . . . 4  |-  ( ( W  e. SLMod  /\  X  e.  K )  ->  (
( 0g `  F
)  .x.  .0.  )  =  .0.  )
2322oveq2d 6666 . . 3  |-  ( ( W  e. SLMod  /\  X  e.  K )  ->  ( X  .x.  ( ( 0g
`  F )  .x.  .0.  ) )  =  ( X  .x.  .0.  )
)
2420, 23eqtrd 2656 . 2  |-  ( ( W  e. SLMod  /\  X  e.  K )  ->  (
( X ( .r
`  F ) ( 0g `  F ) )  .x.  .0.  )  =  ( X  .x.  .0.  ) )
258, 24, 223eqtr3d 2664 1  |-  ( ( W  e. SLMod  /\  X  e.  K )  ->  ( X  .x.  .0.  )  =  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   Basecbs 15857   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945   0gc0g 16100  SRingcsrg 18505  SLModcslmd 29753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-riota 6611  df-ov 6653  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-cmn 18195  df-srg 18506  df-slmd 29754
This theorem is referenced by:  gsumvsca1  29782
  Copyright terms: Public domain W3C validator