Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmd0cl Structured version   Visualization version   Unicode version

Theorem slmd0cl 29771
Description: The ring zero in a semimodule belongs to the ring base set. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmd0cl.f  |-  F  =  (Scalar `  W )
slmd0cl.k  |-  K  =  ( Base `  F
)
slmd0cl.z  |-  .0.  =  ( 0g `  F )
Assertion
Ref Expression
slmd0cl  |-  ( W  e. SLMod  ->  .0.  e.  K
)

Proof of Theorem slmd0cl
StepHypRef Expression
1 slmd0cl.f . . 3  |-  F  =  (Scalar `  W )
21slmdsrg 29760 . 2  |-  ( W  e. SLMod  ->  F  e. SRing )
3 slmd0cl.k . . 3  |-  K  =  ( Base `  F
)
4 slmd0cl.z . . 3  |-  .0.  =  ( 0g `  F )
53, 4srg0cl 18519 . 2  |-  ( F  e. SRing  ->  .0.  e.  K
)
62, 5syl 17 1  |-  ( W  e. SLMod  ->  .0.  e.  K
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   ` cfv 5888   Basecbs 15857  Scalarcsca 15944   0gc0g 16100  SRingcsrg 18505  SLModcslmd 29753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-riota 6611  df-ov 6653  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-cmn 18195  df-srg 18506  df-slmd 29754
This theorem is referenced by:  slmd0vs  29777
  Copyright terms: Public domain W3C validator