Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsssmf Structured version   Visualization version   Unicode version

Theorem smfsssmf 40952
Description: If a function is measurable w.r.t. to a sigma-algebra, then it is measurable w.r.t. to a larger sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfsssmf.r  |-  ( ph  ->  R  e. SAlg )
smfsssmf.s  |-  ( ph  ->  S  e. SAlg )
smfsssmf.i  |-  ( ph  ->  R  C_  S )
smfsssmf.f  |-  ( ph  ->  F  e.  (SMblFn `  R ) )
Assertion
Ref Expression
smfsssmf  |-  ( ph  ->  F  e.  (SMblFn `  S ) )

Proof of Theorem smfsssmf
Dummy variables  x  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . 2  |-  F/ a
ph
2 smfsssmf.s . 2  |-  ( ph  ->  S  e. SAlg )
3 smfsssmf.r . . . 4  |-  ( ph  ->  R  e. SAlg )
4 smfsssmf.f . . . 4  |-  ( ph  ->  F  e.  (SMblFn `  R ) )
5 eqid 2622 . . . 4  |-  dom  F  =  dom  F
63, 4, 5smfdmss 40942 . . 3  |-  ( ph  ->  dom  F  C_  U. R
)
7 smfsssmf.i . . . 4  |-  ( ph  ->  R  C_  S )
87unissd 4462 . . 3  |-  ( ph  ->  U. R  C_  U. S
)
96, 8sstrd 3613 . 2  |-  ( ph  ->  dom  F  C_  U. S
)
103, 4, 5smff 40941 . 2  |-  ( ph  ->  F : dom  F --> RR )
11 ssrest 20980 . . . . 5  |-  ( ( S  e. SAlg  /\  R  C_  S )  ->  ( Rt  dom  F )  C_  ( St  dom  F ) )
122, 7, 11syl2anc 693 . . . 4  |-  ( ph  ->  ( Rt  dom  F )  C_  ( St  dom  F ) )
1312adantr 481 . . 3  |-  ( (
ph  /\  a  e.  RR )  ->  ( Rt  dom 
F )  C_  ( St  dom  F ) )
143adantr 481 . . . 4  |-  ( (
ph  /\  a  e.  RR )  ->  R  e. SAlg
)
154adantr 481 . . . 4  |-  ( (
ph  /\  a  e.  RR )  ->  F  e.  (SMblFn `  R )
)
16 simpr 477 . . . 4  |-  ( (
ph  /\  a  e.  RR )  ->  a  e.  RR )
1714, 15, 5, 16smfpreimalt 40940 . . 3  |-  ( (
ph  /\  a  e.  RR )  ->  { x  e.  dom  F  |  ( F `  x )  <  a }  e.  ( Rt  dom  F ) )
1813, 17sseldd 3604 . 2  |-  ( (
ph  /\  a  e.  RR )  ->  { x  e.  dom  F  |  ( F `  x )  <  a }  e.  ( St  dom  F ) )
191, 2, 9, 10, 18issmfd 40944 1  |-  ( ph  ->  F  e.  (SMblFn `  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990   {crab 2916    C_ wss 3574   U.cuni 4436   class class class wbr 4653   dom cdm 5114   ` cfv 5888  (class class class)co 6650   RRcr 9935    < clt 10074   ↾t crest 16081  SAlgcsalg 40528  SMblFncsmblfn 40909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ioo 12179  df-ico 12181  df-rest 16083  df-smblfn 40910
This theorem is referenced by:  bormflebmf  40962
  Copyright terms: Public domain W3C validator