| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snnexOLD | Structured version Visualization version Unicode version | ||
| Description: Obsolete proof of snnex 6966 as of 5-Dec-2021. (Contributed by NM, 10-Oct-2008.) (Proof shortened by Eric Schmidt, 7-Dec-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| snnexOLD |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vprc 4796 |
. . . 4
| |
| 2 | vsnid 4209 |
. . . . . . . . 9
| |
| 3 | ax6ev 1890 |
. . . . . . . . . 10
| |
| 4 | sneq 4187 |
. . . . . . . . . . 11
| |
| 5 | 4 | equcoms 1947 |
. . . . . . . . . 10
|
| 6 | 3, 5 | eximii 1764 |
. . . . . . . . 9
|
| 7 | snex 4908 |
. . . . . . . . . 10
| |
| 8 | eleq2 2690 |
. . . . . . . . . . 11
| |
| 9 | eqeq1 2626 |
. . . . . . . . . . . 12
| |
| 10 | 9 | exbidv 1850 |
. . . . . . . . . . 11
|
| 11 | 8, 10 | anbi12d 747 |
. . . . . . . . . 10
|
| 12 | 7, 11 | spcev 3300 |
. . . . . . . . 9
|
| 13 | 2, 6, 12 | mp2an 708 |
. . . . . . . 8
|
| 14 | eluniab 4447 |
. . . . . . . 8
| |
| 15 | 13, 14 | mpbir 221 |
. . . . . . 7
|
| 16 | vex 3203 |
. . . . . . 7
| |
| 17 | 15, 16 | 2th 254 |
. . . . . 6
|
| 18 | 17 | eqriv 2619 |
. . . . 5
|
| 19 | 18 | eleq1i 2692 |
. . . 4
|
| 20 | 1, 19 | mtbir 313 |
. . 3
|
| 21 | uniexg 6955 |
. . 3
| |
| 22 | 20, 21 | mto 188 |
. 2
|
| 23 | 22 | nelir 2900 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-nel 2898 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-nul 3916 df-sn 4178 df-pr 4180 df-uni 4437 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |