MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snnexOLD Structured version   Visualization version   Unicode version

Theorem snnexOLD 6967
Description: Obsolete proof of snnex 6966 as of 5-Dec-2021. (Contributed by NM, 10-Oct-2008.) (Proof shortened by Eric Schmidt, 7-Dec-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
snnexOLD  |-  { x  |  E. y  x  =  { y } }  e/  _V
Distinct variable group:    x, y

Proof of Theorem snnexOLD
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 vprc 4796 . . . 4  |-  -.  _V  e.  _V
2 vsnid 4209 . . . . . . . . 9  |-  z  e. 
{ z }
3 ax6ev 1890 . . . . . . . . . 10  |-  E. y 
y  =  z
4 sneq 4187 . . . . . . . . . . 11  |-  ( z  =  y  ->  { z }  =  { y } )
54equcoms 1947 . . . . . . . . . 10  |-  ( y  =  z  ->  { z }  =  { y } )
63, 5eximii 1764 . . . . . . . . 9  |-  E. y { z }  =  { y }
7 snex 4908 . . . . . . . . . 10  |-  { z }  e.  _V
8 eleq2 2690 . . . . . . . . . . 11  |-  ( x  =  { z }  ->  ( z  e.  x  <->  z  e.  {
z } ) )
9 eqeq1 2626 . . . . . . . . . . . 12  |-  ( x  =  { z }  ->  ( x  =  { y }  <->  { z }  =  { y } ) )
109exbidv 1850 . . . . . . . . . . 11  |-  ( x  =  { z }  ->  ( E. y  x  =  { y } 
<->  E. y { z }  =  { y } ) )
118, 10anbi12d 747 . . . . . . . . . 10  |-  ( x  =  { z }  ->  ( ( z  e.  x  /\  E. y  x  =  {
y } )  <->  ( z  e.  { z }  /\  E. y { z }  =  { y } ) ) )
127, 11spcev 3300 . . . . . . . . 9  |-  ( ( z  e.  { z }  /\  E. y { z }  =  { y } )  ->  E. x ( z  e.  x  /\  E. y  x  =  {
y } ) )
132, 6, 12mp2an 708 . . . . . . . 8  |-  E. x
( z  e.  x  /\  E. y  x  =  { y } )
14 eluniab 4447 . . . . . . . 8  |-  ( z  e.  U. { x  |  E. y  x  =  { y } }  <->  E. x ( z  e.  x  /\  E. y  x  =  { y } ) )
1513, 14mpbir 221 . . . . . . 7  |-  z  e. 
U. { x  |  E. y  x  =  { y } }
16 vex 3203 . . . . . . 7  |-  z  e. 
_V
1715, 162th 254 . . . . . 6  |-  ( z  e.  U. { x  |  E. y  x  =  { y } }  <->  z  e.  _V )
1817eqriv 2619 . . . . 5  |-  U. {
x  |  E. y  x  =  { y } }  =  _V
1918eleq1i 2692 . . . 4  |-  ( U. { x  |  E. y  x  =  {
y } }  e.  _V 
<->  _V  e.  _V )
201, 19mtbir 313 . . 3  |-  -.  U. { x  |  E. y  x  =  {
y } }  e.  _V
21 uniexg 6955 . . 3  |-  ( { x  |  E. y  x  =  { y } }  e.  _V  ->  U. { x  |  E. y  x  =  { y } }  e.  _V )
2220, 21mto 188 . 2  |-  -.  {
x  |  E. y  x  =  { y } }  e.  _V
2322nelir 2900 1  |-  { x  |  E. y  x  =  { y } }  e/  _V
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    e/ wnel 2897   _Vcvv 3200   {csn 4177   U.cuni 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-nel 2898  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-nul 3916  df-sn 4178  df-pr 4180  df-uni 4437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator