MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funopsn Structured version   Visualization version   Unicode version

Theorem funopsn 6413
Description: If a function is an ordered pair then it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020.)
Hypotheses
Ref Expression
funopsn.x  |-  X  e. 
_V
funopsn.y  |-  Y  e. 
_V
Assertion
Ref Expression
funopsn  |-  ( ( Fun  F  /\  F  =  <. X ,  Y >. )  ->  E. a
( X  =  {
a }  /\  F  =  { <. a ,  a
>. } ) )
Distinct variable groups:    F, a    X, a    Y, a

Proof of Theorem funopsn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funiun 6412 . . 3  |-  ( Fun 
F  ->  F  =  U_ x  e.  dom  F { <. x ,  ( F `  x )
>. } )
2 eqeq1 2626 . . . . . . . . . 10  |-  ( F  =  <. X ,  Y >.  ->  ( F  = 
U_ x  e.  dom  F { <. x ,  ( F `  x )
>. }  <->  <. X ,  Y >.  =  U_ x  e. 
dom  F { <. x ,  ( F `  x ) >. } ) )
3 eqcom 2629 . . . . . . . . . 10  |-  ( <. X ,  Y >.  = 
U_ x  e.  dom  F { <. x ,  ( F `  x )
>. }  <->  U_ x  e.  dom  F { <. x ,  ( F `  x )
>. }  =  <. X ,  Y >. )
42, 3syl6bb 276 . . . . . . . . 9  |-  ( F  =  <. X ,  Y >.  ->  ( F  = 
U_ x  e.  dom  F { <. x ,  ( F `  x )
>. }  <->  U_ x  e.  dom  F { <. x ,  ( F `  x )
>. }  =  <. X ,  Y >. ) )
54adantl 482 . . . . . . . 8  |-  ( ( Fun  F  /\  F  =  <. X ,  Y >. )  ->  ( F  =  U_ x  e.  dom  F { <. x ,  ( F `  x )
>. }  <->  U_ x  e.  dom  F { <. x ,  ( F `  x )
>. }  =  <. X ,  Y >. ) )
6 funopsn.x . . . . . . . . . . 11  |-  X  e. 
_V
7 funopsn.y . . . . . . . . . . 11  |-  Y  e. 
_V
86, 7opnzi 4943 . . . . . . . . . 10  |-  <. X ,  Y >.  =/=  (/)
9 neeq1 2856 . . . . . . . . . . . . . 14  |-  ( <. X ,  Y >.  =  F  ->  ( <. X ,  Y >.  =/=  (/)  <->  F  =/=  (/) ) )
109eqcoms 2630 . . . . . . . . . . . . 13  |-  ( F  =  <. X ,  Y >.  ->  ( <. X ,  Y >.  =/=  (/)  <->  F  =/=  (/) ) )
11 funrel 5905 . . . . . . . . . . . . . . . . 17  |-  ( Fun 
F  ->  Rel  F )
12 reldm0 5343 . . . . . . . . . . . . . . . . 17  |-  ( Rel 
F  ->  ( F  =  (/)  <->  dom  F  =  (/) ) )
1311, 12syl 17 . . . . . . . . . . . . . . . 16  |-  ( Fun 
F  ->  ( F  =  (/)  <->  dom  F  =  (/) ) )
1413biimprd 238 . . . . . . . . . . . . . . 15  |-  ( Fun 
F  ->  ( dom  F  =  (/)  ->  F  =  (/) ) )
1514necon3d 2815 . . . . . . . . . . . . . 14  |-  ( Fun 
F  ->  ( F  =/=  (/)  ->  dom  F  =/=  (/) ) )
1615com12 32 . . . . . . . . . . . . 13  |-  ( F  =/=  (/)  ->  ( Fun  F  ->  dom  F  =/=  (/) ) )
1710, 16syl6bi 243 . . . . . . . . . . . 12  |-  ( F  =  <. X ,  Y >.  ->  ( <. X ,  Y >.  =/=  (/)  ->  ( Fun  F  ->  dom  F  =/=  (/) ) ) )
1817com3l 89 . . . . . . . . . . 11  |-  ( <. X ,  Y >.  =/=  (/)  ->  ( Fun  F  ->  ( F  =  <. X ,  Y >.  ->  dom  F  =/=  (/) ) ) )
1918impd 447 . . . . . . . . . 10  |-  ( <. X ,  Y >.  =/=  (/)  ->  ( ( Fun 
F  /\  F  =  <. X ,  Y >. )  ->  dom  F  =/=  (/) ) )
208, 19ax-mp 5 . . . . . . . . 9  |-  ( ( Fun  F  /\  F  =  <. X ,  Y >. )  ->  dom  F  =/=  (/) )
21 fvex 6201 . . . . . . . . . 10  |-  ( F `
 x )  e. 
_V
2221, 6, 7iunopeqop 4981 . . . . . . . . 9  |-  ( dom 
F  =/=  (/)  ->  ( U_ x  e.  dom  F { <. x ,  ( F `  x )
>. }  =  <. X ,  Y >.  ->  E. a dom  F  =  { a } ) )
2320, 22syl 17 . . . . . . . 8  |-  ( ( Fun  F  /\  F  =  <. X ,  Y >. )  ->  ( U_ x  e.  dom  F { <. x ,  ( F `
 x ) >. }  =  <. X ,  Y >.  ->  E. a dom  F  =  { a } ) )
245, 23sylbid 230 . . . . . . 7  |-  ( ( Fun  F  /\  F  =  <. X ,  Y >. )  ->  ( F  =  U_ x  e.  dom  F { <. x ,  ( F `  x )
>. }  ->  E. a dom  F  =  { a } ) )
2524imp 445 . . . . . 6  |-  ( ( ( Fun  F  /\  F  =  <. X ,  Y >. )  /\  F  =  U_ x  e.  dom  F { <. x ,  ( F `  x )
>. } )  ->  E. a dom  F  =  { a } )
26 iuneq1 4534 . . . . . . . . . . . 12  |-  ( dom 
F  =  { a }  ->  U_ x  e. 
dom  F { <. x ,  ( F `  x ) >. }  =  U_ x  e.  { a }  { <. x ,  ( F `  x ) >. } )
27 vex 3203 . . . . . . . . . . . . 13  |-  a  e. 
_V
28 id 22 . . . . . . . . . . . . . . 15  |-  ( x  =  a  ->  x  =  a )
29 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( x  =  a  ->  ( F `  x )  =  ( F `  a ) )
3028, 29opeq12d 4410 . . . . . . . . . . . . . 14  |-  ( x  =  a  ->  <. x ,  ( F `  x ) >.  =  <. a ,  ( F `  a ) >. )
3130sneqd 4189 . . . . . . . . . . . . 13  |-  ( x  =  a  ->  { <. x ,  ( F `  x ) >. }  =  { <. a ,  ( F `  a )
>. } )
3227, 31iunxsn 4603 . . . . . . . . . . . 12  |-  U_ x  e.  { a }  { <. x ,  ( F `
 x ) >. }  =  { <. a ,  ( F `  a ) >. }
3326, 32syl6eq 2672 . . . . . . . . . . 11  |-  ( dom 
F  =  { a }  ->  U_ x  e. 
dom  F { <. x ,  ( F `  x ) >. }  =  { <. a ,  ( F `  a )
>. } )
3433adantl 482 . . . . . . . . . 10  |-  ( ( ( Fun  F  /\  F  =  <. X ,  Y >. )  /\  dom  F  =  { a } )  ->  U_ x  e. 
dom  F { <. x ,  ( F `  x ) >. }  =  { <. a ,  ( F `  a )
>. } )
3534eqeq2d 2632 . . . . . . . . 9  |-  ( ( ( Fun  F  /\  F  =  <. X ,  Y >. )  /\  dom  F  =  { a } )  ->  ( F  =  U_ x  e.  dom  F { <. x ,  ( F `  x )
>. }  <->  F  =  { <. a ,  ( F `
 a ) >. } ) )
36 eqeq1 2626 . . . . . . . . . . . . . 14  |-  ( F  =  <. X ,  Y >.  ->  ( F  =  { <. a ,  ( F `  a )
>. }  <->  <. X ,  Y >.  =  { <. a ,  ( F `  a ) >. } ) )
3736adantl 482 . . . . . . . . . . . . 13  |-  ( ( Fun  F  /\  F  =  <. X ,  Y >. )  ->  ( F  =  { <. a ,  ( F `  a )
>. }  <->  <. X ,  Y >.  =  { <. a ,  ( F `  a ) >. } ) )
38 eqcom 2629 . . . . . . . . . . . . . 14  |-  ( <. X ,  Y >.  =  { <. a ,  ( F `  a )
>. }  <->  { <. a ,  ( F `  a )
>. }  =  <. X ,  Y >. )
39 fvex 6201 . . . . . . . . . . . . . . 15  |-  ( F `
 a )  e. 
_V
4027, 39, 6, 7snopeqop 4969 . . . . . . . . . . . . . 14  |-  ( {
<. a ,  ( F `
 a ) >. }  =  <. X ,  Y >. 
<->  ( a  =  ( F `  a )  /\  X  =  Y  /\  X  =  {
a } ) )
4138, 40sylbb 209 . . . . . . . . . . . . 13  |-  ( <. X ,  Y >.  =  { <. a ,  ( F `  a )
>. }  ->  ( a  =  ( F `  a )  /\  X  =  Y  /\  X  =  { a } ) )
4237, 41syl6bi 243 . . . . . . . . . . . 12  |-  ( ( Fun  F  /\  F  =  <. X ,  Y >. )  ->  ( F  =  { <. a ,  ( F `  a )
>. }  ->  ( a  =  ( F `  a )  /\  X  =  Y  /\  X  =  { a } ) ) )
4342imp 445 . . . . . . . . . . 11  |-  ( ( ( Fun  F  /\  F  =  <. X ,  Y >. )  /\  F  =  { <. a ,  ( F `  a )
>. } )  ->  (
a  =  ( F `
 a )  /\  X  =  Y  /\  X  =  { a } ) )
44 simpr3 1069 . . . . . . . . . . . . . . 15  |-  ( ( F  =  { <. a ,  ( F `  a ) >. }  /\  ( a  =  ( F `  a )  /\  X  =  Y  /\  X  =  {
a } ) )  ->  X  =  {
a } )
45 simp1 1061 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( a  =  ( F `
 a )  /\  X  =  Y  /\  X  =  { a } )  ->  a  =  ( F `  a ) )
4645eqcomd 2628 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a  =  ( F `
 a )  /\  X  =  Y  /\  X  =  { a } )  ->  ( F `  a )  =  a )
4746opeq2d 4409 . . . . . . . . . . . . . . . . . 18  |-  ( ( a  =  ( F `
 a )  /\  X  =  Y  /\  X  =  { a } )  ->  <. a ,  ( F `  a ) >.  =  <. a ,  a >. )
4847sneqd 4189 . . . . . . . . . . . . . . . . 17  |-  ( ( a  =  ( F `
 a )  /\  X  =  Y  /\  X  =  { a } )  ->  { <. a ,  ( F `  a ) >. }  =  { <. a ,  a
>. } )
4948eqeq2d 2632 . . . . . . . . . . . . . . . 16  |-  ( ( a  =  ( F `
 a )  /\  X  =  Y  /\  X  =  { a } )  ->  ( F  =  { <. a ,  ( F `  a ) >. }  <->  F  =  { <. a ,  a
>. } ) )
5049biimpac 503 . . . . . . . . . . . . . . 15  |-  ( ( F  =  { <. a ,  ( F `  a ) >. }  /\  ( a  =  ( F `  a )  /\  X  =  Y  /\  X  =  {
a } ) )  ->  F  =  { <. a ,  a >. } )
5144, 50jca 554 . . . . . . . . . . . . . 14  |-  ( ( F  =  { <. a ,  ( F `  a ) >. }  /\  ( a  =  ( F `  a )  /\  X  =  Y  /\  X  =  {
a } ) )  ->  ( X  =  { a }  /\  F  =  { <. a ,  a >. } ) )
5251ex 450 . . . . . . . . . . . . 13  |-  ( F  =  { <. a ,  ( F `  a ) >. }  ->  ( ( a  =  ( F `  a )  /\  X  =  Y  /\  X  =  {
a } )  -> 
( X  =  {
a }  /\  F  =  { <. a ,  a
>. } ) ) )
5352adantl 482 . . . . . . . . . . . 12  |-  ( ( ( Fun  F  /\  F  =  <. X ,  Y >. )  /\  F  =  { <. a ,  ( F `  a )
>. } )  ->  (
( a  =  ( F `  a )  /\  X  =  Y  /\  X  =  {
a } )  -> 
( X  =  {
a }  /\  F  =  { <. a ,  a
>. } ) ) )
5453a1dd 50 . . . . . . . . . . 11  |-  ( ( ( Fun  F  /\  F  =  <. X ,  Y >. )  /\  F  =  { <. a ,  ( F `  a )
>. } )  ->  (
( a  =  ( F `  a )  /\  X  =  Y  /\  X  =  {
a } )  -> 
( dom  F  =  { a }  ->  ( X  =  { a }  /\  F  =  { <. a ,  a
>. } ) ) ) )
5543, 54mpd 15 . . . . . . . . . 10  |-  ( ( ( Fun  F  /\  F  =  <. X ,  Y >. )  /\  F  =  { <. a ,  ( F `  a )
>. } )  ->  ( dom  F  =  { a }  ->  ( X  =  { a }  /\  F  =  { <. a ,  a >. } ) ) )
5655impancom 456 . . . . . . . . 9  |-  ( ( ( Fun  F  /\  F  =  <. X ,  Y >. )  /\  dom  F  =  { a } )  ->  ( F  =  { <. a ,  ( F `  a )
>. }  ->  ( X  =  { a }  /\  F  =  { <. a ,  a >. } ) ) )
5735, 56sylbid 230 . . . . . . . 8  |-  ( ( ( Fun  F  /\  F  =  <. X ,  Y >. )  /\  dom  F  =  { a } )  ->  ( F  =  U_ x  e.  dom  F { <. x ,  ( F `  x )
>. }  ->  ( X  =  { a }  /\  F  =  { <. a ,  a >. } ) ) )
5857impancom 456 . . . . . . 7  |-  ( ( ( Fun  F  /\  F  =  <. X ,  Y >. )  /\  F  =  U_ x  e.  dom  F { <. x ,  ( F `  x )
>. } )  ->  ( dom  F  =  { a }  ->  ( X  =  { a }  /\  F  =  { <. a ,  a >. } ) ) )
5958eximdv 1846 . . . . . 6  |-  ( ( ( Fun  F  /\  F  =  <. X ,  Y >. )  /\  F  =  U_ x  e.  dom  F { <. x ,  ( F `  x )
>. } )  ->  ( E. a dom  F  =  { a }  ->  E. a ( X  =  { a }  /\  F  =  { <. a ,  a >. } ) ) )
6025, 59mpd 15 . . . . 5  |-  ( ( ( Fun  F  /\  F  =  <. X ,  Y >. )  /\  F  =  U_ x  e.  dom  F { <. x ,  ( F `  x )
>. } )  ->  E. a
( X  =  {
a }  /\  F  =  { <. a ,  a
>. } ) )
6160expcom 451 . . . 4  |-  ( F  =  U_ x  e. 
dom  F { <. x ,  ( F `  x ) >. }  ->  ( ( Fun  F  /\  F  =  <. X ,  Y >. )  ->  E. a
( X  =  {
a }  /\  F  =  { <. a ,  a
>. } ) ) )
6261expd 452 . . 3  |-  ( F  =  U_ x  e. 
dom  F { <. x ,  ( F `  x ) >. }  ->  ( Fun  F  ->  ( F  =  <. X ,  Y >.  ->  E. a
( X  =  {
a }  /\  F  =  { <. a ,  a
>. } ) ) ) )
631, 62mpcom 38 . 2  |-  ( Fun 
F  ->  ( F  =  <. X ,  Y >.  ->  E. a ( X  =  { a }  /\  F  =  { <. a ,  a >. } ) ) )
6463imp 445 1  |-  ( ( Fun  F  /\  F  =  <. X ,  Y >. )  ->  E. a
( X  =  {
a }  /\  F  =  { <. a ,  a
>. } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   _Vcvv 3200   (/)c0 3915   {csn 4177   <.cop 4183   U_ciun 4520   dom cdm 5114   Rel wrel 5119   Fun wfun 5882   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  funop  6414  funop1  41302
  Copyright terms: Public domain W3C validator