MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  somin1 Structured version   Visualization version   Unicode version

Theorem somin1 5529
Description: Property of a minimum in a strict order. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
somin1  |-  ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X
) )  ->  if ( A R B ,  A ,  B )
( R  u.  _I  ) A )

Proof of Theorem somin1
StepHypRef Expression
1 iftrue 4092 . . . . 5  |-  ( A R B  ->  if ( A R B ,  A ,  B )  =  A )
21olcd 408 . . . 4  |-  ( A R B  ->  ( if ( A R B ,  A ,  B
) R A  \/  if ( A R B ,  A ,  B
)  =  A ) )
32adantl 482 . . 3  |-  ( ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X
) )  /\  A R B )  ->  ( if ( A R B ,  A ,  B
) R A  \/  if ( A R B ,  A ,  B
)  =  A ) )
4 sotric 5061 . . . . . . 7  |-  ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( A R B  <->  -.  ( A  =  B  \/  B R A ) ) )
5 orcom 402 . . . . . . . . 9  |-  ( ( A  =  B  \/  B R A )  <->  ( B R A  \/  A  =  B ) )
6 eqcom 2629 . . . . . . . . . 10  |-  ( A  =  B  <->  B  =  A )
76orbi2i 541 . . . . . . . . 9  |-  ( ( B R A  \/  A  =  B )  <->  ( B R A  \/  B  =  A )
)
85, 7bitri 264 . . . . . . . 8  |-  ( ( A  =  B  \/  B R A )  <->  ( B R A  \/  B  =  A ) )
98notbii 310 . . . . . . 7  |-  ( -.  ( A  =  B  \/  B R A )  <->  -.  ( B R A  \/  B  =  A ) )
104, 9syl6bb 276 . . . . . 6  |-  ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( A R B  <->  -.  ( B R A  \/  B  =  A ) ) )
1110con2bid 344 . . . . 5  |-  ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( B R A  \/  B  =  A )  <->  -.  A R B ) )
1211biimpar 502 . . . 4  |-  ( ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X
) )  /\  -.  A R B )  -> 
( B R A  \/  B  =  A ) )
13 iffalse 4095 . . . . . 6  |-  ( -.  A R B  ->  if ( A R B ,  A ,  B
)  =  B )
14 breq1 4656 . . . . . . 7  |-  ( if ( A R B ,  A ,  B
)  =  B  -> 
( if ( A R B ,  A ,  B ) R A  <-> 
B R A ) )
15 eqeq1 2626 . . . . . . 7  |-  ( if ( A R B ,  A ,  B
)  =  B  -> 
( if ( A R B ,  A ,  B )  =  A  <-> 
B  =  A ) )
1614, 15orbi12d 746 . . . . . 6  |-  ( if ( A R B ,  A ,  B
)  =  B  -> 
( ( if ( A R B ,  A ,  B ) R A  \/  if ( A R B ,  A ,  B )  =  A )  <->  ( B R A  \/  B  =  A ) ) )
1713, 16syl 17 . . . . 5  |-  ( -.  A R B  -> 
( ( if ( A R B ,  A ,  B ) R A  \/  if ( A R B ,  A ,  B )  =  A )  <->  ( B R A  \/  B  =  A ) ) )
1817adantl 482 . . . 4  |-  ( ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X
) )  /\  -.  A R B )  -> 
( ( if ( A R B ,  A ,  B ) R A  \/  if ( A R B ,  A ,  B )  =  A )  <->  ( B R A  \/  B  =  A ) ) )
1912, 18mpbird 247 . . 3  |-  ( ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X
) )  /\  -.  A R B )  -> 
( if ( A R B ,  A ,  B ) R A  \/  if ( A R B ,  A ,  B )  =  A ) )
203, 19pm2.61dan 832 . 2  |-  ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( if ( A R B ,  A ,  B
) R A  \/  if ( A R B ,  A ,  B
)  =  A ) )
21 poleloe 5527 . . 3  |-  ( A  e.  X  ->  ( if ( A R B ,  A ,  B
) ( R  u.  _I  ) A  <->  ( if ( A R B ,  A ,  B ) R A  \/  if ( A R B ,  A ,  B )  =  A ) ) )
2221ad2antrl 764 . 2  |-  ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( if ( A R B ,  A ,  B
) ( R  u.  _I  ) A  <->  ( if ( A R B ,  A ,  B ) R A  \/  if ( A R B ,  A ,  B )  =  A ) ) )
2320, 22mpbird 247 1  |-  ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X
) )  ->  if ( A R B ,  A ,  B )
( R  u.  _I  ) A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    u. cun 3572   ifcif 4086   class class class wbr 4653    _I cid 5023    Or wor 5034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121
This theorem is referenced by:  somin2  5531  soltmin  5532
  Copyright terms: Public domain W3C validator