MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgcmn Structured version   Visualization version   Unicode version

Theorem srgcmn 18508
Description: A semiring is a commutative monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.)
Assertion
Ref Expression
srgcmn  |-  ( R  e. SRing  ->  R  e. CMnd )

Proof of Theorem srgcmn
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3  |-  ( Base `  R )  =  (
Base `  R )
2 eqid 2622 . . 3  |-  (mulGrp `  R )  =  (mulGrp `  R )
3 eqid 2622 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
4 eqid 2622 . . 3  |-  ( .r
`  R )  =  ( .r `  R
)
5 eqid 2622 . . 3  |-  ( 0g
`  R )  =  ( 0g `  R
)
61, 2, 3, 4, 5issrg 18507 . 2  |-  ( R  e. SRing 
<->  ( R  e. CMnd  /\  (mulGrp `  R )  e. 
Mnd  /\  A. x  e.  ( Base `  R
) ( A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) )  /\  ( ( ( 0g `  R ) ( .r `  R
) x )  =  ( 0g `  R
)  /\  ( x
( .r `  R
) ( 0g `  R ) )  =  ( 0g `  R
) ) ) ) )
76simp1bi 1076 1  |-  ( R  e. SRing  ->  R  e. CMnd )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   .rcmulr 15942   0gc0g 16100   Mndcmnd 17294  CMndccmn 18193  mulGrpcmgp 18489  SRingcsrg 18505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-srg 18506
This theorem is referenced by:  srgmnd  18509  srgcom  18525  srgsummulcr  18537  sgsummulcl  18538  srgbinomlem3  18542  srgbinomlem4  18543  srgbinomlem  18544  gsumvsca2  29783
  Copyright terms: Public domain W3C validator