MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscfn2 Structured version   Visualization version   Unicode version

Theorem sscfn2 16478
Description: The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
sscfn1.1  |-  ( ph  ->  H  C_cat  J )
sscfn2.2  |-  ( ph  ->  T  =  dom  dom  J )
Assertion
Ref Expression
sscfn2  |-  ( ph  ->  J  Fn  ( T  X.  T ) )

Proof of Theorem sscfn2
Dummy variables  t  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sscfn1.1 . . 3  |-  ( ph  ->  H  C_cat  J )
2 brssc 16474 . . 3  |-  ( H 
C_cat  J  <->  E. t ( J  Fn  ( t  X.  t )  /\  E. y  e.  ~P  t H  e.  X_ x  e.  ( y  X.  y
) ~P ( J `
 x ) ) )
31, 2sylib 208 . 2  |-  ( ph  ->  E. t ( J  Fn  ( t  X.  t )  /\  E. y  e.  ~P  t H  e.  X_ x  e.  ( y  X.  y
) ~P ( J `
 x ) ) )
4 simpr 477 . . . . . 6  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  J  Fn  ( t  X.  t
) )
5 sscfn2.2 . . . . . . . . . 10  |-  ( ph  ->  T  =  dom  dom  J )
65adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  T  =  dom  dom  J )
7 fndm 5990 . . . . . . . . . . . 12  |-  ( J  Fn  ( t  X.  t )  ->  dom  J  =  ( t  X.  t ) )
87adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  dom  J  =  ( t  X.  t ) )
98dmeqd 5326 . . . . . . . . . 10  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  dom  dom 
J  =  dom  (
t  X.  t ) )
10 dmxpid 5345 . . . . . . . . . 10  |-  dom  (
t  X.  t )  =  t
119, 10syl6eq 2672 . . . . . . . . 9  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  dom  dom 
J  =  t )
126, 11eqtr2d 2657 . . . . . . . 8  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  t  =  T )
1312sqxpeqd 5141 . . . . . . 7  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  (
t  X.  t )  =  ( T  X.  T ) )
1413fneq2d 5982 . . . . . 6  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  ( J  Fn  ( t  X.  t )  <->  J  Fn  ( T  X.  T
) ) )
154, 14mpbid 222 . . . . 5  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  J  Fn  ( T  X.  T
) )
1615ex 450 . . . 4  |-  ( ph  ->  ( J  Fn  (
t  X.  t )  ->  J  Fn  ( T  X.  T ) ) )
1716adantrd 484 . . 3  |-  ( ph  ->  ( ( J  Fn  ( t  X.  t
)  /\  E. y  e.  ~P  t H  e.  X_ x  e.  (
y  X.  y ) ~P ( J `  x ) )  ->  J  Fn  ( T  X.  T ) ) )
1817exlimdv 1861 . 2  |-  ( ph  ->  ( E. t ( J  Fn  ( t  X.  t )  /\  E. y  e.  ~P  t H  e.  X_ x  e.  ( y  X.  y
) ~P ( J `
 x ) )  ->  J  Fn  ( T  X.  T ) ) )
193, 18mpd 15 1  |-  ( ph  ->  J  Fn  ( T  X.  T ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   ~Pcpw 4158   class class class wbr 4653    X. cxp 5112   dom cdm 5114    Fn wfn 5883   ` cfv 5888   X_cixp 7908    C_cat cssc 16467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ixp 7909  df-ssc 16470
This theorem is referenced by:  ssc2  16482  ssctr  16485
  Copyright terms: Public domain W3C validator