MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssctr Structured version   Visualization version   Unicode version

Theorem ssctr 16485
Description: The subcategory subset relation is transitive. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
ssctr  |-  ( ( A  C_cat  B  /\  B  C_cat  C
)  ->  A  C_cat  C )

Proof of Theorem ssctr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . 5  |-  ( ( A  C_cat  B  /\  B  C_cat  C
)  ->  A  C_cat  B )
2 eqidd 2623 . . . . 5  |-  ( ( A  C_cat  B  /\  B  C_cat  C
)  ->  dom  dom  A  =  dom  dom  A )
31, 2sscfn1 16477 . . . 4  |-  ( ( A  C_cat  B  /\  B  C_cat  C
)  ->  A  Fn  ( dom  dom  A  X.  dom  dom  A ) )
4 eqidd 2623 . . . . 5  |-  ( ( A  C_cat  B  /\  B  C_cat  C
)  ->  dom  dom  B  =  dom  dom  B )
51, 4sscfn2 16478 . . . 4  |-  ( ( A  C_cat  B  /\  B  C_cat  C
)  ->  B  Fn  ( dom  dom  B  X.  dom  dom  B ) )
63, 5, 1ssc1 16481 . . 3  |-  ( ( A  C_cat  B  /\  B  C_cat  C
)  ->  dom  dom  A  C_ 
dom  dom  B )
7 simpr 477 . . . . 5  |-  ( ( A  C_cat  B  /\  B  C_cat  C
)  ->  B  C_cat  C )
8 eqidd 2623 . . . . 5  |-  ( ( A  C_cat  B  /\  B  C_cat  C
)  ->  dom  dom  C  =  dom  dom  C )
97, 8sscfn2 16478 . . . 4  |-  ( ( A  C_cat  B  /\  B  C_cat  C
)  ->  C  Fn  ( dom  dom  C  X.  dom  dom  C ) )
105, 9, 7ssc1 16481 . . 3  |-  ( ( A  C_cat  B  /\  B  C_cat  C
)  ->  dom  dom  B  C_ 
dom  dom  C )
116, 10sstrd 3613 . 2  |-  ( ( A  C_cat  B  /\  B  C_cat  C
)  ->  dom  dom  A  C_ 
dom  dom  C )
123adantr 481 . . . . 5  |-  ( ( ( A  C_cat  B  /\  B  C_cat  C )  /\  (
x  e.  dom  dom  A  /\  y  e.  dom  dom 
A ) )  ->  A  Fn  ( dom  dom 
A  X.  dom  dom  A ) )
131adantr 481 . . . . 5  |-  ( ( ( A  C_cat  B  /\  B  C_cat  C )  /\  (
x  e.  dom  dom  A  /\  y  e.  dom  dom 
A ) )  ->  A  C_cat  B )
14 simprl 794 . . . . 5  |-  ( ( ( A  C_cat  B  /\  B  C_cat  C )  /\  (
x  e.  dom  dom  A  /\  y  e.  dom  dom 
A ) )  ->  x  e.  dom  dom  A
)
15 simprr 796 . . . . 5  |-  ( ( ( A  C_cat  B  /\  B  C_cat  C )  /\  (
x  e.  dom  dom  A  /\  y  e.  dom  dom 
A ) )  -> 
y  e.  dom  dom  A )
1612, 13, 14, 15ssc2 16482 . . . 4  |-  ( ( ( A  C_cat  B  /\  B  C_cat  C )  /\  (
x  e.  dom  dom  A  /\  y  e.  dom  dom 
A ) )  -> 
( x A y )  C_  ( x B y ) )
175adantr 481 . . . . 5  |-  ( ( ( A  C_cat  B  /\  B  C_cat  C )  /\  (
x  e.  dom  dom  A  /\  y  e.  dom  dom 
A ) )  ->  B  Fn  ( dom  dom 
B  X.  dom  dom  B ) )
187adantr 481 . . . . 5  |-  ( ( ( A  C_cat  B  /\  B  C_cat  C )  /\  (
x  e.  dom  dom  A  /\  y  e.  dom  dom 
A ) )  ->  B  C_cat  C )
196adantr 481 . . . . . 6  |-  ( ( ( A  C_cat  B  /\  B  C_cat  C )  /\  (
x  e.  dom  dom  A  /\  y  e.  dom  dom 
A ) )  ->  dom  dom  A  C_  dom  dom 
B )
2019, 14sseldd 3604 . . . . 5  |-  ( ( ( A  C_cat  B  /\  B  C_cat  C )  /\  (
x  e.  dom  dom  A  /\  y  e.  dom  dom 
A ) )  ->  x  e.  dom  dom  B
)
2119, 15sseldd 3604 . . . . 5  |-  ( ( ( A  C_cat  B  /\  B  C_cat  C )  /\  (
x  e.  dom  dom  A  /\  y  e.  dom  dom 
A ) )  -> 
y  e.  dom  dom  B )
2217, 18, 20, 21ssc2 16482 . . . 4  |-  ( ( ( A  C_cat  B  /\  B  C_cat  C )  /\  (
x  e.  dom  dom  A  /\  y  e.  dom  dom 
A ) )  -> 
( x B y )  C_  ( x C y ) )
2316, 22sstrd 3613 . . 3  |-  ( ( ( A  C_cat  B  /\  B  C_cat  C )  /\  (
x  e.  dom  dom  A  /\  y  e.  dom  dom 
A ) )  -> 
( x A y )  C_  ( x C y ) )
2423ralrimivva 2971 . 2  |-  ( ( A  C_cat  B  /\  B  C_cat  C
)  ->  A. x  e.  dom  dom  A A. y  e.  dom  dom  A
( x A y )  C_  ( x C y ) )
25 sscrel 16473 . . . . . 6  |-  Rel  C_cat
2625brrelex2i 5159 . . . . 5  |-  ( B 
C_cat  C  ->  C  e.  _V )
2726adantl 482 . . . 4  |-  ( ( A  C_cat  B  /\  B  C_cat  C
)  ->  C  e.  _V )
28 dmexg 7097 . . . 4  |-  ( C  e.  _V  ->  dom  C  e.  _V )
29 dmexg 7097 . . . 4  |-  ( dom 
C  e.  _V  ->  dom 
dom  C  e.  _V )
3027, 28, 293syl 18 . . 3  |-  ( ( A  C_cat  B  /\  B  C_cat  C
)  ->  dom  dom  C  e.  _V )
313, 9, 30isssc 16480 . 2  |-  ( ( A  C_cat  B  /\  B  C_cat  C
)  ->  ( A  C_cat  C  <-> 
( dom  dom  A  C_  dom  dom  C  /\  A. x  e.  dom  dom  A A. y  e.  dom  dom 
A ( x A y )  C_  (
x C y ) ) ) )
3211, 24, 31mpbir2and 957 1  |-  ( ( A  C_cat  B  /\  B  C_cat  C
)  ->  A  C_cat  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   class class class wbr 4653    X. cxp 5112   dom cdm 5114    Fn wfn 5883  (class class class)co 6650    C_cat cssc 16467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-ixp 7909  df-ssc 16470
This theorem is referenced by:  subsubc  16513
  Copyright terms: Public domain W3C validator