| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssctr | Structured version Visualization version Unicode version | ||
| Description: The subcategory subset relation is transitive. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| ssctr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 473 |
. . . . 5
| |
| 2 | eqidd 2623 |
. . . . 5
| |
| 3 | 1, 2 | sscfn1 16477 |
. . . 4
|
| 4 | eqidd 2623 |
. . . . 5
| |
| 5 | 1, 4 | sscfn2 16478 |
. . . 4
|
| 6 | 3, 5, 1 | ssc1 16481 |
. . 3
|
| 7 | simpr 477 |
. . . . 5
| |
| 8 | eqidd 2623 |
. . . . 5
| |
| 9 | 7, 8 | sscfn2 16478 |
. . . 4
|
| 10 | 5, 9, 7 | ssc1 16481 |
. . 3
|
| 11 | 6, 10 | sstrd 3613 |
. 2
|
| 12 | 3 | adantr 481 |
. . . . 5
|
| 13 | 1 | adantr 481 |
. . . . 5
|
| 14 | simprl 794 |
. . . . 5
| |
| 15 | simprr 796 |
. . . . 5
| |
| 16 | 12, 13, 14, 15 | ssc2 16482 |
. . . 4
|
| 17 | 5 | adantr 481 |
. . . . 5
|
| 18 | 7 | adantr 481 |
. . . . 5
|
| 19 | 6 | adantr 481 |
. . . . . 6
|
| 20 | 19, 14 | sseldd 3604 |
. . . . 5
|
| 21 | 19, 15 | sseldd 3604 |
. . . . 5
|
| 22 | 17, 18, 20, 21 | ssc2 16482 |
. . . 4
|
| 23 | 16, 22 | sstrd 3613 |
. . 3
|
| 24 | 23 | ralrimivva 2971 |
. 2
|
| 25 | sscrel 16473 |
. . . . . 6
| |
| 26 | 25 | brrelex2i 5159 |
. . . . 5
|
| 27 | 26 | adantl 482 |
. . . 4
|
| 28 | dmexg 7097 |
. . . 4
| |
| 29 | dmexg 7097 |
. . . 4
| |
| 30 | 27, 28, 29 | 3syl 18 |
. . 3
|
| 31 | 3, 9, 30 | isssc 16480 |
. 2
|
| 32 | 11, 24, 31 | mpbir2and 957 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-ixp 7909 df-ssc 16470 |
| This theorem is referenced by: subsubc 16513 |
| Copyright terms: Public domain | W3C validator |