Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dssmap2d Structured version   Visualization version   Unicode version

Theorem dssmap2d 38316
Description: For any base set  B the duality operator for self-mappings of subsets of that base set when composed with itself is the restricted identity operator. (Contributed by RP, 21-Apr-2021.)
Hypotheses
Ref Expression
dssmapfvd.o  |-  O  =  ( b  e.  _V  |->  ( f  e.  ( ~P b  ^m  ~P b )  |->  ( s  e.  ~P b  |->  ( b  \  ( f `
 ( b  \ 
s ) ) ) ) ) )
dssmapfvd.d  |-  D  =  ( O `  B
)
dssmapfvd.b  |-  ( ph  ->  B  e.  V )
Assertion
Ref Expression
dssmap2d  |-  ( ph  ->  ( D  o.  D
)  =  (  _I  |`  ( ~P B  ^m  ~P B ) ) )
Distinct variable groups:    B, b,
f, s    ph, b, f, s
Allowed substitution hints:    D( f, s, b)    O( f, s, b)    V( f, s, b)

Proof of Theorem dssmap2d
StepHypRef Expression
1 dssmapfvd.o . . . 4  |-  O  =  ( b  e.  _V  |->  ( f  e.  ( ~P b  ^m  ~P b )  |->  ( s  e.  ~P b  |->  ( b  \  ( f `
 ( b  \ 
s ) ) ) ) ) )
2 dssmapfvd.d . . . 4  |-  D  =  ( O `  B
)
3 dssmapfvd.b . . . 4  |-  ( ph  ->  B  e.  V )
41, 2, 3dssmapnvod 38314 . . 3  |-  ( ph  ->  `' D  =  D
)
54coeq1d 5283 . 2  |-  ( ph  ->  ( `' D  o.  D )  =  ( D  o.  D ) )
61, 2, 3dssmapf1od 38315 . . 3  |-  ( ph  ->  D : ( ~P B  ^m  ~P B
)
-1-1-onto-> ( ~P B  ^m  ~P B ) )
7 f1ococnv1 6165 . . 3  |-  ( D : ( ~P B  ^m  ~P B ) -1-1-onto-> ( ~P B  ^m  ~P B
)  ->  ( `' D  o.  D )  =  (  _I  |`  ( ~P B  ^m  ~P B
) ) )
86, 7syl 17 . 2  |-  ( ph  ->  ( `' D  o.  D )  =  (  _I  |`  ( ~P B  ^m  ~P B ) ) )
95, 8eqtr3d 2658 1  |-  ( ph  ->  ( D  o.  D
)  =  (  _I  |`  ( ~P B  ^m  ~P B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571   ~Pcpw 4158    |-> cmpt 4729    _I cid 5023   `'ccnv 5113    |` cres 5116    o. ccom 5118   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator