Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsss Structured version   Visualization version   Unicode version

Theorem ntrclsss 38361
Description: If interior and closure functions are related then a subset relation of a pair of function values is equivalent to subset relation of a pair of the other function's values. (Contributed by RP, 27-Jun-2021.)
Hypotheses
Ref Expression
ntrcls.o  |-  O  =  ( i  e.  _V  |->  ( k  e.  ( ~P i  ^m  ~P i )  |->  ( j  e.  ~P i  |->  ( i  \  ( k `
 ( i  \ 
j ) ) ) ) ) )
ntrcls.d  |-  D  =  ( O `  B
)
ntrcls.r  |-  ( ph  ->  I D K )
ntrclsfv.s  |-  ( ph  ->  S  e.  ~P B
)
ntrclsfv.t  |-  ( ph  ->  T  e.  ~P B
)
Assertion
Ref Expression
ntrclsss  |-  ( ph  ->  ( ( I `  S )  C_  (
I `  T )  <->  ( K `  ( B 
\  T ) ) 
C_  ( K `  ( B  \  S ) ) ) )
Distinct variable groups:    B, i,
j, k    j, K, k    S, j    T, j    ph, i, j, k
Allowed substitution hints:    D( i, j, k)    S( i, k)    T( i, k)    I( i, j, k)    K( i)    O( i, j, k)

Proof of Theorem ntrclsss
StepHypRef Expression
1 ntrcls.o . . . 4  |-  O  =  ( i  e.  _V  |->  ( k  e.  ( ~P i  ^m  ~P i )  |->  ( j  e.  ~P i  |->  ( i  \  ( k `
 ( i  \ 
j ) ) ) ) ) )
2 ntrcls.d . . . 4  |-  D  =  ( O `  B
)
3 ntrcls.r . . . 4  |-  ( ph  ->  I D K )
4 ntrclsfv.s . . . 4  |-  ( ph  ->  S  e.  ~P B
)
51, 2, 3, 4ntrclsfv 38357 . . 3  |-  ( ph  ->  ( I `  S
)  =  ( B 
\  ( K `  ( B  \  S ) ) ) )
6 ntrclsfv.t . . . 4  |-  ( ph  ->  T  e.  ~P B
)
71, 2, 3, 6ntrclsfv 38357 . . 3  |-  ( ph  ->  ( I `  T
)  =  ( B 
\  ( K `  ( B  \  T ) ) ) )
85, 7sseq12d 3634 . 2  |-  ( ph  ->  ( ( I `  S )  C_  (
I `  T )  <->  ( B  \  ( K `
 ( B  \  S ) ) ) 
C_  ( B  \ 
( K `  ( B  \  T ) ) ) ) )
91, 2, 3ntrclskex 38352 . . . 4  |-  ( ph  ->  K  e.  ( ~P B  ^m  ~P B
) )
109ancli 574 . . 3  |-  ( ph  ->  ( ph  /\  K  e.  ( ~P B  ^m  ~P B ) ) )
11 elmapi 7879 . . . . . . 7  |-  ( K  e.  ( ~P B  ^m  ~P B )  ->  K : ~P B --> ~P B
)
1211adantl 482 . . . . . 6  |-  ( (
ph  /\  K  e.  ( ~P B  ^m  ~P B ) )  ->  K : ~P B --> ~P B
)
132, 3ntrclsrcomplex 38333 . . . . . . 7  |-  ( ph  ->  ( B  \  T
)  e.  ~P B
)
1413adantr 481 . . . . . 6  |-  ( (
ph  /\  K  e.  ( ~P B  ^m  ~P B ) )  -> 
( B  \  T
)  e.  ~P B
)
1512, 14ffvelrnd 6360 . . . . 5  |-  ( (
ph  /\  K  e.  ( ~P B  ^m  ~P B ) )  -> 
( K `  ( B  \  T ) )  e.  ~P B )
1615elpwid 4170 . . . 4  |-  ( (
ph  /\  K  e.  ( ~P B  ^m  ~P B ) )  -> 
( K `  ( B  \  T ) ) 
C_  B )
172, 3ntrclsrcomplex 38333 . . . . . . 7  |-  ( ph  ->  ( B  \  S
)  e.  ~P B
)
1817adantr 481 . . . . . 6  |-  ( (
ph  /\  K  e.  ( ~P B  ^m  ~P B ) )  -> 
( B  \  S
)  e.  ~P B
)
1912, 18ffvelrnd 6360 . . . . 5  |-  ( (
ph  /\  K  e.  ( ~P B  ^m  ~P B ) )  -> 
( K `  ( B  \  S ) )  e.  ~P B )
2019elpwid 4170 . . . 4  |-  ( (
ph  /\  K  e.  ( ~P B  ^m  ~P B ) )  -> 
( K `  ( B  \  S ) ) 
C_  B )
2116, 20jca 554 . . 3  |-  ( (
ph  /\  K  e.  ( ~P B  ^m  ~P B ) )  -> 
( ( K `  ( B  \  T ) )  C_  B  /\  ( K `  ( B 
\  S ) ) 
C_  B ) )
22 sscon34b 38317 . . 3  |-  ( ( ( K `  ( B  \  T ) ) 
C_  B  /\  ( K `  ( B  \  S ) )  C_  B )  ->  (
( K `  ( B  \  T ) ) 
C_  ( K `  ( B  \  S ) )  <->  ( B  \ 
( K `  ( B  \  S ) ) )  C_  ( B  \  ( K `  ( B  \  T ) ) ) ) )
2310, 21, 223syl 18 . 2  |-  ( ph  ->  ( ( K `  ( B  \  T ) )  C_  ( K `  ( B  \  S
) )  <->  ( B  \  ( K `  ( B  \  S ) ) )  C_  ( B  \  ( K `  ( B  \  T ) ) ) ) )
248, 23bitr4d 271 1  |-  ( ph  ->  ( ( I `  S )  C_  (
I `  T )  <->  ( K `  ( B 
\  T ) ) 
C_  ( K `  ( B  \  S ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator