Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsiso Structured version   Visualization version   Unicode version

Theorem ntrclsiso 38365
Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that either is isotonic hold equally. (Contributed by RP, 3-Jun-2021.)
Hypotheses
Ref Expression
ntrcls.o  |-  O  =  ( i  e.  _V  |->  ( k  e.  ( ~P i  ^m  ~P i )  |->  ( j  e.  ~P i  |->  ( i  \  ( k `
 ( i  \ 
j ) ) ) ) ) )
ntrcls.d  |-  D  =  ( O `  B
)
ntrcls.r  |-  ( ph  ->  I D K )
Assertion
Ref Expression
ntrclsiso  |-  ( ph  ->  ( A. s  e. 
~P  B A. t  e.  ~P  B ( s 
C_  t  ->  (
I `  s )  C_  ( I `  t
) )  <->  A. s  e.  ~P  B A. t  e.  ~P  B ( s 
C_  t  ->  ( K `  s )  C_  ( K `  t
) ) ) )
Distinct variable groups:    B, i,
j, k, s, t   
j, I, k, s, t    ph, i, j, k, s, t
Allowed substitution hints:    D( t, i, j, k, s)    I(
i)    K( t, i, j, k, s)    O( t, i, j, k, s)

Proof of Theorem ntrclsiso
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3626 . . . . 5  |-  ( s  =  b  ->  (
s  C_  t  <->  b  C_  t ) )
2 fveq2 6191 . . . . . 6  |-  ( s  =  b  ->  (
I `  s )  =  ( I `  b ) )
32sseq1d 3632 . . . . 5  |-  ( s  =  b  ->  (
( I `  s
)  C_  ( I `  t )  <->  ( I `  b )  C_  (
I `  t )
) )
41, 3imbi12d 334 . . . 4  |-  ( s  =  b  ->  (
( s  C_  t  ->  ( I `  s
)  C_  ( I `  t ) )  <->  ( b  C_  t  ->  ( I `  b )  C_  (
I `  t )
) ) )
5 sseq2 3627 . . . . 5  |-  ( t  =  a  ->  (
b  C_  t  <->  b  C_  a ) )
6 fveq2 6191 . . . . . 6  |-  ( t  =  a  ->  (
I `  t )  =  ( I `  a ) )
76sseq2d 3633 . . . . 5  |-  ( t  =  a  ->  (
( I `  b
)  C_  ( I `  t )  <->  ( I `  b )  C_  (
I `  a )
) )
85, 7imbi12d 334 . . . 4  |-  ( t  =  a  ->  (
( b  C_  t  ->  ( I `  b
)  C_  ( I `  t ) )  <->  ( b  C_  a  ->  ( I `  b )  C_  (
I `  a )
) ) )
94, 8cbvral2v 3179 . . 3  |-  ( A. s  e.  ~P  B A. t  e.  ~P  B ( s  C_  t  ->  ( I `  s )  C_  (
I `  t )
)  <->  A. b  e.  ~P  B A. a  e.  ~P  B ( b  C_  a  ->  ( I `  b )  C_  (
I `  a )
) )
10 ralcom 3098 . . 3  |-  ( A. b  e.  ~P  B A. a  e.  ~P  B ( b  C_  a  ->  ( I `  b )  C_  (
I `  a )
)  <->  A. a  e.  ~P  B A. b  e.  ~P  B ( b  C_  a  ->  ( I `  b )  C_  (
I `  a )
) )
119, 10bitri 264 . 2  |-  ( A. s  e.  ~P  B A. t  e.  ~P  B ( s  C_  t  ->  ( I `  s )  C_  (
I `  t )
)  <->  A. a  e.  ~P  B A. b  e.  ~P  B ( b  C_  a  ->  ( I `  b )  C_  (
I `  a )
) )
12 simpl 473 . . . . 5  |-  ( (
ph  /\  s  e.  ~P B )  ->  ph )
13 ntrcls.d . . . . . 6  |-  D  =  ( O `  B
)
14 ntrcls.r . . . . . 6  |-  ( ph  ->  I D K )
1513, 14ntrclsbex 38332 . . . . 5  |-  ( ph  ->  B  e.  _V )
1612, 15syl 17 . . . 4  |-  ( (
ph  /\  s  e.  ~P B )  ->  B  e.  _V )
17 difssd 3738 . . . 4  |-  ( (
ph  /\  s  e.  ~P B )  ->  ( B  \  s )  C_  B )
1816, 17sselpwd 4807 . . 3  |-  ( (
ph  /\  s  e.  ~P B )  ->  ( B  \  s )  e. 
~P B )
19 elpwi 4168 . . . 4  |-  ( a  e.  ~P B  -> 
a  C_  B )
20 simpl 473 . . . . . 6  |-  ( ( B  e.  _V  /\  a  C_  B )  ->  B  e.  _V )
21 difssd 3738 . . . . . 6  |-  ( ( B  e.  _V  /\  a  C_  B )  -> 
( B  \  a
)  C_  B )
2220, 21sselpwd 4807 . . . . 5  |-  ( ( B  e.  _V  /\  a  C_  B )  -> 
( B  \  a
)  e.  ~P B
)
23 simpr 477 . . . . . . . 8  |-  ( ( ( B  e.  _V  /\  a  C_  B )  /\  s  =  ( B  \  a ) )  ->  s  =  ( B  \  a ) )
2423difeq2d 3728 . . . . . . 7  |-  ( ( ( B  e.  _V  /\  a  C_  B )  /\  s  =  ( B  \  a ) )  ->  ( B  \ 
s )  =  ( B  \  ( B 
\  a ) ) )
2524eqeq2d 2632 . . . . . 6  |-  ( ( ( B  e.  _V  /\  a  C_  B )  /\  s  =  ( B  \  a ) )  ->  ( a  =  ( B  \  s
)  <->  a  =  ( B  \  ( B 
\  a ) ) ) )
26 eqcom 2629 . . . . . 6  |-  ( a  =  ( B  \ 
( B  \  a
) )  <->  ( B  \  ( B  \  a
) )  =  a )
2725, 26syl6bb 276 . . . . 5  |-  ( ( ( B  e.  _V  /\  a  C_  B )  /\  s  =  ( B  \  a ) )  ->  ( a  =  ( B  \  s
)  <->  ( B  \ 
( B  \  a
) )  =  a ) )
28 dfss4 3858 . . . . . . 7  |-  ( a 
C_  B  <->  ( B  \  ( B  \  a
) )  =  a )
2928biimpi 206 . . . . . 6  |-  ( a 
C_  B  ->  ( B  \  ( B  \ 
a ) )  =  a )
3029adantl 482 . . . . 5  |-  ( ( B  e.  _V  /\  a  C_  B )  -> 
( B  \  ( B  \  a ) )  =  a )
3122, 27, 30rspcedvd 3317 . . . 4  |-  ( ( B  e.  _V  /\  a  C_  B )  ->  E. s  e.  ~P  B a  =  ( B  \  s ) )
3215, 19, 31syl2an 494 . . 3  |-  ( (
ph  /\  a  e.  ~P B )  ->  E. s  e.  ~P  B a  =  ( B  \  s
) )
33 simpl1 1064 . . . . . 6  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B
)  ->  ph )
3433, 15syl 17 . . . . 5  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B
)  ->  B  e.  _V )
35 difssd 3738 . . . . 5  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B
)  ->  ( B  \  t )  C_  B
)
3634, 35sselpwd 4807 . . . 4  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B
)  ->  ( B  \  t )  e.  ~P B )
37 elpwi 4168 . . . . . 6  |-  ( b  e.  ~P B  -> 
b  C_  B )
38 simpl 473 . . . . . . . 8  |-  ( ( B  e.  _V  /\  b  C_  B )  ->  B  e.  _V )
39 difssd 3738 . . . . . . . 8  |-  ( ( B  e.  _V  /\  b  C_  B )  -> 
( B  \  b
)  C_  B )
4038, 39sselpwd 4807 . . . . . . 7  |-  ( ( B  e.  _V  /\  b  C_  B )  -> 
( B  \  b
)  e.  ~P B
)
41 simpr 477 . . . . . . . . . 10  |-  ( ( ( B  e.  _V  /\  b  C_  B )  /\  t  =  ( B  \  b ) )  ->  t  =  ( B  \  b ) )
4241difeq2d 3728 . . . . . . . . 9  |-  ( ( ( B  e.  _V  /\  b  C_  B )  /\  t  =  ( B  \  b ) )  ->  ( B  \ 
t )  =  ( B  \  ( B 
\  b ) ) )
4342eqeq2d 2632 . . . . . . . 8  |-  ( ( ( B  e.  _V  /\  b  C_  B )  /\  t  =  ( B  \  b ) )  ->  ( b  =  ( B  \  t
)  <->  b  =  ( B  \  ( B 
\  b ) ) ) )
44 eqcom 2629 . . . . . . . 8  |-  ( b  =  ( B  \ 
( B  \  b
) )  <->  ( B  \  ( B  \  b
) )  =  b )
4543, 44syl6bb 276 . . . . . . 7  |-  ( ( ( B  e.  _V  /\  b  C_  B )  /\  t  =  ( B  \  b ) )  ->  ( b  =  ( B  \  t
)  <->  ( B  \ 
( B  \  b
) )  =  b ) )
46 dfss4 3858 . . . . . . . . 9  |-  ( b 
C_  B  <->  ( B  \  ( B  \  b
) )  =  b )
4746biimpi 206 . . . . . . . 8  |-  ( b 
C_  B  ->  ( B  \  ( B  \ 
b ) )  =  b )
4847adantl 482 . . . . . . 7  |-  ( ( B  e.  _V  /\  b  C_  B )  -> 
( B  \  ( B  \  b ) )  =  b )
4940, 45, 48rspcedvd 3317 . . . . . 6  |-  ( ( B  e.  _V  /\  b  C_  B )  ->  E. t  e.  ~P  B b  =  ( B  \  t ) )
5015, 37, 49syl2an 494 . . . . 5  |-  ( (
ph  /\  b  e.  ~P B )  ->  E. t  e.  ~P  B b  =  ( B  \  t
) )
51503ad2antl1 1223 . . . 4  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  b  e.  ~P B
)  ->  E. t  e.  ~P  B b  =  ( B  \  t
) )
52 simp12 1092 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  s  e.  ~P B )
5352elpwid 4170 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  s  C_  B
)
54 simp2 1062 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  t  e.  ~P B )
5554elpwid 4170 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  t  C_  B
)
56 sscon34b 38317 . . . . . . . 8  |-  ( ( s  C_  B  /\  t  C_  B )  -> 
( s  C_  t  <->  ( B  \  t ) 
C_  ( B  \ 
s ) ) )
5753, 55, 56syl2anc 693 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  ( s  C_  t 
<->  ( B  \  t
)  C_  ( B  \  s ) ) )
5857bicomd 213 . . . . . 6  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  ( ( B 
\  t )  C_  ( B  \  s
)  <->  s  C_  t
) )
59 simp11 1091 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  ph )
60 ntrcls.o . . . . . . . . . . . 12  |-  O  =  ( i  e.  _V  |->  ( k  e.  ( ~P i  ^m  ~P i )  |->  ( j  e.  ~P i  |->  ( i  \  ( k `
 ( i  \ 
j ) ) ) ) ) )
6160, 13, 14ntrclsiex 38351 . . . . . . . . . . 11  |-  ( ph  ->  I  e.  ( ~P B  ^m  ~P B
) )
6259, 61syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  I  e.  ( ~P B  ^m  ~P B ) )
63 elmapi 7879 . . . . . . . . . 10  |-  ( I  e.  ( ~P B  ^m  ~P B )  ->  I : ~P B --> ~P B
)
6462, 63syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  I : ~P B
--> ~P B )
6559, 15syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  B  e.  _V )
66 difssd 3738 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  ( B  \ 
t )  C_  B
)
6765, 66sselpwd 4807 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  ( B  \ 
t )  e.  ~P B )
6864, 67ffvelrnd 6360 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  ( I `  ( B  \  t
) )  e.  ~P B )
6968elpwid 4170 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  ( I `  ( B  \  t
) )  C_  B
)
70 difssd 3738 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  ( B  \ 
s )  C_  B
)
7165, 70sselpwd 4807 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  ( B  \ 
s )  e.  ~P B )
7264, 71ffvelrnd 6360 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  ( I `  ( B  \  s
) )  e.  ~P B )
7372elpwid 4170 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  ( I `  ( B  \  s
) )  C_  B
)
74 sscon34b 38317 . . . . . . 7  |-  ( ( ( I `  ( B  \  t ) ) 
C_  B  /\  (
I `  ( B  \  s ) )  C_  B )  ->  (
( I `  ( B  \  t ) ) 
C_  ( I `  ( B  \  s
) )  <->  ( B  \  ( I `  ( B  \  s ) ) )  C_  ( B  \  ( I `  ( B  \  t ) ) ) ) )
7569, 73, 74syl2anc 693 . . . . . 6  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  ( ( I `
 ( B  \ 
t ) )  C_  ( I `  ( B  \  s ) )  <-> 
( B  \  (
I `  ( B  \  s ) ) ) 
C_  ( B  \ 
( I `  ( B  \  t ) ) ) ) )
7658, 75imbi12d 334 . . . . 5  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  ( ( ( B  \  t ) 
C_  ( B  \ 
s )  ->  (
I `  ( B  \  t ) )  C_  ( I `  ( B  \  s ) ) )  <->  ( s  C_  t  ->  ( B  \ 
( I `  ( B  \  s ) ) )  C_  ( B  \  ( I `  ( B  \  t ) ) ) ) ) )
77 simp3 1063 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  b  =  ( B  \  t ) )
78 simp13 1093 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  a  =  ( B  \  s ) )
7977, 78sseq12d 3634 . . . . . 6  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  ( b  C_  a 
<->  ( B  \  t
)  C_  ( B  \  s ) ) )
8077fveq2d 6195 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  ( I `  b )  =  ( I `  ( B 
\  t ) ) )
8178fveq2d 6195 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  ( I `  a )  =  ( I `  ( B 
\  s ) ) )
8280, 81sseq12d 3634 . . . . . 6  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  ( ( I `
 b )  C_  ( I `  a
)  <->  ( I `  ( B  \  t
) )  C_  (
I `  ( B  \  s ) ) ) )
8379, 82imbi12d 334 . . . . 5  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  ( ( b 
C_  a  ->  (
I `  b )  C_  ( I `  a
) )  <->  ( ( B  \  t )  C_  ( B  \  s
)  ->  ( I `  ( B  \  t
) )  C_  (
I `  ( B  \  s ) ) ) ) )
8460, 13, 14ntrclsfv1 38353 . . . . . . . . . 10  |-  ( ph  ->  ( D `  I
)  =  K )
8559, 84syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  ( D `  I )  =  K )
8685fveq1d 6193 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  ( ( D `
 I ) `  s )  =  ( K `  s ) )
87 eqid 2622 . . . . . . . . 9  |-  ( D `
 I )  =  ( D `  I
)
88 eqid 2622 . . . . . . . . 9  |-  ( ( D `  I ) `
 s )  =  ( ( D `  I ) `  s
)
8960, 13, 65, 62, 87, 52, 88dssmapfv3d 38313 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  ( ( D `
 I ) `  s )  =  ( B  \  ( I `
 ( B  \ 
s ) ) ) )
9086, 89eqtr3d 2658 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  ( K `  s )  =  ( B  \  ( I `
 ( B  \ 
s ) ) ) )
9159, 14syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  I D K )
9260, 13, 91ntrclsfv1 38353 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  ( D `  I )  =  K )
9392fveq1d 6193 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  ( ( D `
 I ) `  t )  =  ( K `  t ) )
94 eqid 2622 . . . . . . . . 9  |-  ( ( D `  I ) `
 t )  =  ( ( D `  I ) `  t
)
9560, 13, 65, 62, 87, 54, 94dssmapfv3d 38313 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  ( ( D `
 I ) `  t )  =  ( B  \  ( I `
 ( B  \ 
t ) ) ) )
9693, 95eqtr3d 2658 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  ( K `  t )  =  ( B  \  ( I `
 ( B  \ 
t ) ) ) )
9790, 96sseq12d 3634 . . . . . 6  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  ( ( K `
 s )  C_  ( K `  t )  <-> 
( B  \  (
I `  ( B  \  s ) ) ) 
C_  ( B  \ 
( I `  ( B  \  t ) ) ) ) )
9897imbi2d 330 . . . . 5  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  ( ( s 
C_  t  ->  ( K `  s )  C_  ( K `  t
) )  <->  ( s  C_  t  ->  ( B  \  ( I `  ( B  \  s ) ) )  C_  ( B  \  ( I `  ( B  \  t ) ) ) ) ) )
9976, 83, 983bitr4d 300 . . . 4  |-  ( ( ( ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  /\  t  e.  ~P B  /\  b  =  ( B  \  t ) )  ->  ( ( b 
C_  a  ->  (
I `  b )  C_  ( I `  a
) )  <->  ( s  C_  t  ->  ( K `  s )  C_  ( K `  t )
) ) )
10036, 51, 99ralxfrd2 4884 . . 3  |-  ( (
ph  /\  s  e.  ~P B  /\  a  =  ( B  \ 
s ) )  -> 
( A. b  e. 
~P  B ( b 
C_  a  ->  (
I `  b )  C_  ( I `  a
) )  <->  A. t  e.  ~P  B ( s 
C_  t  ->  ( K `  s )  C_  ( K `  t
) ) ) )
10118, 32, 100ralxfrd2 4884 . 2  |-  ( ph  ->  ( A. a  e. 
~P  B A. b  e.  ~P  B ( b 
C_  a  ->  (
I `  b )  C_  ( I `  a
) )  <->  A. s  e.  ~P  B A. t  e.  ~P  B ( s 
C_  t  ->  ( K `  s )  C_  ( K `  t
) ) ) )
10211, 101syl5bb 272 1  |-  ( ph  ->  ( A. s  e. 
~P  B A. t  e.  ~P  B ( s 
C_  t  ->  (
I `  s )  C_  ( I `  t
) )  <->  A. s  e.  ~P  B A. t  e.  ~P  B ( s 
C_  t  ->  ( K `  s )  C_  ( K `  t
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator