MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssdisj Structured version   Visualization version   Unicode version

Theorem ssdisj 4026
Description: Intersection with a subclass of a disjoint class. (Contributed by FL, 24-Jan-2007.) (Proof shortened by JJ, 14-Jul-2021.)
Assertion
Ref Expression
ssdisj  |-  ( ( A  C_  B  /\  ( B  i^i  C )  =  (/) )  ->  ( A  i^i  C )  =  (/) )

Proof of Theorem ssdisj
StepHypRef Expression
1 ssrin 3838 . . 3  |-  ( A 
C_  B  ->  ( A  i^i  C )  C_  ( B  i^i  C ) )
2 eqimss 3657 . . 3  |-  ( ( B  i^i  C )  =  (/)  ->  ( B  i^i  C )  C_  (/) )
31, 2sylan9ss 3616 . 2  |-  ( ( A  C_  B  /\  ( B  i^i  C )  =  (/) )  ->  ( A  i^i  C )  C_  (/) )
4 ss0 3974 . 2  |-  ( ( A  i^i  C ) 
C_  (/)  ->  ( A  i^i  C )  =  (/) )
53, 4syl 17 1  |-  ( ( A  C_  B  /\  ( B  i^i  C )  =  (/) )  ->  ( A  i^i  C )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    i^i cin 3573    C_ wss 3574   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916
This theorem is referenced by:  djudisj  5561  fimacnvdisj  6083  marypha1lem  8339  ackbij1lem16  9057  ackbij1lem18  9059  fin23lem20  9159  fin23lem30  9164  elcls3  20887  neindisj  20921  imadifxp  29414  ldgenpisyslem1  30226  chtvalz  30707  diophren  37377
  Copyright terms: Public domain W3C validator