MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcls3 Structured version   Visualization version   Unicode version

Theorem elcls3 20887
Description: Membership in a closure in terms of the members of a basis. Theorem 6.5(b) of [Munkres] p. 95. (Contributed by NM, 26-Feb-2007.) (Revised by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
elcls3.1  |-  ( ph  ->  J  =  ( topGen `  B ) )
elcls3.2  |-  ( ph  ->  X  =  U. J
)
elcls3.3  |-  ( ph  ->  B  e.  TopBases )
elcls3.4  |-  ( ph  ->  S  C_  X )
elcls3.5  |-  ( ph  ->  P  e.  X )
Assertion
Ref Expression
elcls3  |-  ( ph  ->  ( P  e.  ( ( cls `  J
) `  S )  <->  A. x  e.  B  ( P  e.  x  -> 
( x  i^i  S
)  =/=  (/) ) ) )
Distinct variable groups:    x, B    x, P    x, S
Allowed substitution hints:    ph( x)    J( x)    X( x)

Proof of Theorem elcls3
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elcls3.1 . . . 4  |-  ( ph  ->  J  =  ( topGen `  B ) )
2 elcls3.3 . . . . 5  |-  ( ph  ->  B  e.  TopBases )
3 tgcl 20773 . . . . 5  |-  ( B  e.  TopBases  ->  ( topGen `  B
)  e.  Top )
42, 3syl 17 . . . 4  |-  ( ph  ->  ( topGen `  B )  e.  Top )
51, 4eqeltrd 2701 . . 3  |-  ( ph  ->  J  e.  Top )
6 elcls3.4 . . . 4  |-  ( ph  ->  S  C_  X )
7 elcls3.2 . . . 4  |-  ( ph  ->  X  =  U. J
)
86, 7sseqtrd 3641 . . 3  |-  ( ph  ->  S  C_  U. J )
9 elcls3.5 . . . 4  |-  ( ph  ->  P  e.  X )
109, 7eleqtrd 2703 . . 3  |-  ( ph  ->  P  e.  U. J
)
11 eqid 2622 . . . 4  |-  U. J  =  U. J
1211elcls 20877 . . 3  |-  ( ( J  e.  Top  /\  S  C_  U. J  /\  P  e.  U. J )  ->  ( P  e.  ( ( cls `  J
) `  S )  <->  A. y  e.  J  ( P  e.  y  -> 
( y  i^i  S
)  =/=  (/) ) ) )
135, 8, 10, 12syl3anc 1326 . 2  |-  ( ph  ->  ( P  e.  ( ( cls `  J
) `  S )  <->  A. y  e.  J  ( P  e.  y  -> 
( y  i^i  S
)  =/=  (/) ) ) )
14 bastg 20770 . . . . . . . . 9  |-  ( B  e.  TopBases  ->  B  C_  ( topGen `
 B ) )
152, 14syl 17 . . . . . . . 8  |-  ( ph  ->  B  C_  ( topGen `  B ) )
1615, 1sseqtr4d 3642 . . . . . . 7  |-  ( ph  ->  B  C_  J )
1716sseld 3602 . . . . . 6  |-  ( ph  ->  ( y  e.  B  ->  y  e.  J ) )
1817imim1d 82 . . . . 5  |-  ( ph  ->  ( ( y  e.  J  ->  ( P  e.  y  ->  ( y  i^i  S )  =/=  (/) ) )  ->  (
y  e.  B  -> 
( P  e.  y  ->  ( y  i^i 
S )  =/=  (/) ) ) ) )
1918ralimdv2 2961 . . . 4  |-  ( ph  ->  ( A. y  e.  J  ( P  e.  y  ->  ( y  i^i  S )  =/=  (/) )  ->  A. y  e.  B  ( P  e.  y  ->  ( y  i^i  S
)  =/=  (/) ) ) )
20 eleq2 2690 . . . . . 6  |-  ( y  =  x  ->  ( P  e.  y  <->  P  e.  x ) )
21 ineq1 3807 . . . . . . 7  |-  ( y  =  x  ->  (
y  i^i  S )  =  ( x  i^i 
S ) )
2221neeq1d 2853 . . . . . 6  |-  ( y  =  x  ->  (
( y  i^i  S
)  =/=  (/)  <->  ( x  i^i  S )  =/=  (/) ) )
2320, 22imbi12d 334 . . . . 5  |-  ( y  =  x  ->  (
( P  e.  y  ->  ( y  i^i 
S )  =/=  (/) )  <->  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) ) )
2423cbvralv 3171 . . . 4  |-  ( A. y  e.  B  ( P  e.  y  ->  ( y  i^i  S )  =/=  (/) )  <->  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )
2519, 24syl6ib 241 . . 3  |-  ( ph  ->  ( A. y  e.  J  ( P  e.  y  ->  ( y  i^i  S )  =/=  (/) )  ->  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S
)  =/=  (/) ) ) )
26 simprl 794 . . . . . . . 8  |-  ( ( ( ph  /\  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )  /\  ( y  e.  J  /\  P  e.  y
) )  ->  y  e.  J )
271ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )  /\  ( y  e.  J  /\  P  e.  y
) )  ->  J  =  ( topGen `  B
) )
2826, 27eleqtrd 2703 . . . . . . 7  |-  ( ( ( ph  /\  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )  /\  ( y  e.  J  /\  P  e.  y
) )  ->  y  e.  ( topGen `  B )
)
29 simprr 796 . . . . . . 7  |-  ( ( ( ph  /\  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )  /\  ( y  e.  J  /\  P  e.  y
) )  ->  P  e.  y )
30 tg2 20769 . . . . . . 7  |-  ( ( y  e.  ( topGen `  B )  /\  P  e.  y )  ->  E. z  e.  B  ( P  e.  z  /\  z  C_  y ) )
3128, 29, 30syl2anc 693 . . . . . 6  |-  ( ( ( ph  /\  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )  /\  ( y  e.  J  /\  P  e.  y
) )  ->  E. z  e.  B  ( P  e.  z  /\  z  C_  y ) )
32 eleq2 2690 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  ( P  e.  x  <->  P  e.  z ) )
33 ineq1 3807 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  (
x  i^i  S )  =  ( z  i^i 
S ) )
3433neeq1d 2853 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  (
( x  i^i  S
)  =/=  (/)  <->  ( z  i^i  S )  =/=  (/) ) )
3532, 34imbi12d 334 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
( P  e.  x  ->  ( x  i^i  S
)  =/=  (/) )  <->  ( P  e.  z  ->  ( z  i^i  S )  =/=  (/) ) ) )
3635rspccva 3308 . . . . . . . . . . . 12  |-  ( ( A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S
)  =/=  (/) )  /\  z  e.  B )  ->  ( P  e.  z  ->  ( z  i^i 
S )  =/=  (/) ) )
3736imp 445 . . . . . . . . . . 11  |-  ( ( ( A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) )  /\  z  e.  B )  /\  P  e.  z
)  ->  ( z  i^i  S )  =/=  (/) )
38 ssdisj 4026 . . . . . . . . . . . . 13  |-  ( ( z  C_  y  /\  ( y  i^i  S
)  =  (/) )  -> 
( z  i^i  S
)  =  (/) )
3938ex 450 . . . . . . . . . . . 12  |-  ( z 
C_  y  ->  (
( y  i^i  S
)  =  (/)  ->  (
z  i^i  S )  =  (/) ) )
4039necon3d 2815 . . . . . . . . . . 11  |-  ( z 
C_  y  ->  (
( z  i^i  S
)  =/=  (/)  ->  (
y  i^i  S )  =/=  (/) ) )
4137, 40syl5com 31 . . . . . . . . . 10  |-  ( ( ( A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) )  /\  z  e.  B )  /\  P  e.  z
)  ->  ( z  C_  y  ->  ( y  i^i  S )  =/=  (/) ) )
4241exp31 630 . . . . . . . . 9  |-  ( A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) )  ->  (
z  e.  B  -> 
( P  e.  z  ->  ( z  C_  y  ->  ( y  i^i 
S )  =/=  (/) ) ) ) )
4342imp4a 614 . . . . . . . 8  |-  ( A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) )  ->  (
z  e.  B  -> 
( ( P  e.  z  /\  z  C_  y )  ->  (
y  i^i  S )  =/=  (/) ) ) )
4443rexlimdv 3030 . . . . . . 7  |-  ( A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) )  ->  ( E. z  e.  B  ( P  e.  z  /\  z  C_  y )  ->  ( y  i^i 
S )  =/=  (/) ) )
4544ad2antlr 763 . . . . . 6  |-  ( ( ( ph  /\  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )  /\  ( y  e.  J  /\  P  e.  y
) )  ->  ( E. z  e.  B  ( P  e.  z  /\  z  C_  y )  ->  ( y  i^i 
S )  =/=  (/) ) )
4631, 45mpd 15 . . . . 5  |-  ( ( ( ph  /\  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )  /\  ( y  e.  J  /\  P  e.  y
) )  ->  (
y  i^i  S )  =/=  (/) )
4746exp43 640 . . . 4  |-  ( ph  ->  ( A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) )  -> 
( y  e.  J  ->  ( P  e.  y  ->  ( y  i^i 
S )  =/=  (/) ) ) ) )
4847ralrimdv 2968 . . 3  |-  ( ph  ->  ( A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) )  ->  A. y  e.  J  ( P  e.  y  ->  ( y  i^i  S
)  =/=  (/) ) ) )
4925, 48impbid 202 . 2  |-  ( ph  ->  ( A. y  e.  J  ( P  e.  y  ->  ( y  i^i  S )  =/=  (/) )  <->  A. x  e.  B  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) ) )
5013, 49bitrd 268 1  |-  ( ph  ->  ( P  e.  ( ( cls `  J
) `  S )  <->  A. x  e.  B  ( P  e.  x  -> 
( x  i^i  S
)  =/=  (/) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   (/)c0 3915   U.cuni 4436   ` cfv 5888   topGenctg 16098   Topctop 20698   TopBasesctb 20749   clsccl 20822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-topgen 16104  df-top 20699  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825
This theorem is referenced by:  2ndcsep  21262  ptclsg  21418  qdensere  22573
  Copyright terms: Public domain W3C validator