| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elcls3 | Structured version Visualization version Unicode version | ||
| Description: Membership in a closure in terms of the members of a basis. Theorem 6.5(b) of [Munkres] p. 95. (Contributed by NM, 26-Feb-2007.) (Revised by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| elcls3.1 |
|
| elcls3.2 |
|
| elcls3.3 |
|
| elcls3.4 |
|
| elcls3.5 |
|
| Ref | Expression |
|---|---|
| elcls3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elcls3.1 |
. . . 4
| |
| 2 | elcls3.3 |
. . . . 5
| |
| 3 | tgcl 20773 |
. . . . 5
| |
| 4 | 2, 3 | syl 17 |
. . . 4
|
| 5 | 1, 4 | eqeltrd 2701 |
. . 3
|
| 6 | elcls3.4 |
. . . 4
| |
| 7 | elcls3.2 |
. . . 4
| |
| 8 | 6, 7 | sseqtrd 3641 |
. . 3
|
| 9 | elcls3.5 |
. . . 4
| |
| 10 | 9, 7 | eleqtrd 2703 |
. . 3
|
| 11 | eqid 2622 |
. . . 4
| |
| 12 | 11 | elcls 20877 |
. . 3
|
| 13 | 5, 8, 10, 12 | syl3anc 1326 |
. 2
|
| 14 | bastg 20770 |
. . . . . . . . 9
| |
| 15 | 2, 14 | syl 17 |
. . . . . . . 8
|
| 16 | 15, 1 | sseqtr4d 3642 |
. . . . . . 7
|
| 17 | 16 | sseld 3602 |
. . . . . 6
|
| 18 | 17 | imim1d 82 |
. . . . 5
|
| 19 | 18 | ralimdv2 2961 |
. . . 4
|
| 20 | eleq2 2690 |
. . . . . 6
| |
| 21 | ineq1 3807 |
. . . . . . 7
| |
| 22 | 21 | neeq1d 2853 |
. . . . . 6
|
| 23 | 20, 22 | imbi12d 334 |
. . . . 5
|
| 24 | 23 | cbvralv 3171 |
. . . 4
|
| 25 | 19, 24 | syl6ib 241 |
. . 3
|
| 26 | simprl 794 |
. . . . . . . 8
| |
| 27 | 1 | ad2antrr 762 |
. . . . . . . 8
|
| 28 | 26, 27 | eleqtrd 2703 |
. . . . . . 7
|
| 29 | simprr 796 |
. . . . . . 7
| |
| 30 | tg2 20769 |
. . . . . . 7
| |
| 31 | 28, 29, 30 | syl2anc 693 |
. . . . . 6
|
| 32 | eleq2 2690 |
. . . . . . . . . . . . . 14
| |
| 33 | ineq1 3807 |
. . . . . . . . . . . . . . 15
| |
| 34 | 33 | neeq1d 2853 |
. . . . . . . . . . . . . 14
|
| 35 | 32, 34 | imbi12d 334 |
. . . . . . . . . . . . 13
|
| 36 | 35 | rspccva 3308 |
. . . . . . . . . . . 12
|
| 37 | 36 | imp 445 |
. . . . . . . . . . 11
|
| 38 | ssdisj 4026 |
. . . . . . . . . . . . 13
| |
| 39 | 38 | ex 450 |
. . . . . . . . . . . 12
|
| 40 | 39 | necon3d 2815 |
. . . . . . . . . . 11
|
| 41 | 37, 40 | syl5com 31 |
. . . . . . . . . 10
|
| 42 | 41 | exp31 630 |
. . . . . . . . 9
|
| 43 | 42 | imp4a 614 |
. . . . . . . 8
|
| 44 | 43 | rexlimdv 3030 |
. . . . . . 7
|
| 45 | 44 | ad2antlr 763 |
. . . . . 6
|
| 46 | 31, 45 | mpd 15 |
. . . . 5
|
| 47 | 46 | exp43 640 |
. . . 4
|
| 48 | 47 | ralrimdv 2968 |
. . 3
|
| 49 | 25, 48 | impbid 202 |
. 2
|
| 50 | 13, 49 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-topgen 16104 df-top 20699 df-bases 20750 df-cld 20823 df-ntr 20824 df-cls 20825 |
| This theorem is referenced by: 2ndcsep 21262 ptclsg 21418 qdensere 22573 |
| Copyright terms: Public domain | W3C validator |