Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diophren Structured version   Visualization version   Unicode version

Theorem diophren 37377
Description: Change variables in a Diophantine set, using class notation. This allows already proved Diophantine sets to be reused in contexts with more variables. (Contributed by Stefan O'Rear, 16-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.)
Assertion
Ref Expression
diophren  |-  ( ( S  e.  (Dioph `  N )  /\  M  e.  NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... M ) )  |  ( a  o.  F )  e.  S }  e.  (Dioph `  M
) )
Distinct variable groups:    S, a    M, a    N, a    F, a

Proof of Theorem diophren
Dummy variables  b 
c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 11386 . . . . . 6  |-  ZZ  e.  _V
2 difexg 4808 . . . . . 6  |-  ( ZZ  e.  _V  ->  ( ZZ  \  NN )  e. 
_V )
31, 2ax-mp 5 . . . . 5  |-  ( ZZ 
\  NN )  e. 
_V
4 ominf 8172 . . . . . 6  |-  -.  om  e.  Fin
5 nnuz 11723 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
6 0p1e1 11132 . . . . . . . . . . 11  |-  ( 0  +  1 )  =  1
76fveq2i 6194 . . . . . . . . . 10  |-  ( ZZ>= `  ( 0  +  1 ) )  =  (
ZZ>= `  1 )
85, 7eqtr4i 2647 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  ( 0  +  1 ) )
98difeq2i 3725 . . . . . . . 8  |-  ( ZZ 
\  NN )  =  ( ZZ  \  ( ZZ>=
`  ( 0  +  1 ) ) )
10 0z 11388 . . . . . . . . 9  |-  0  e.  ZZ
11 lzenom 37333 . . . . . . . . 9  |-  ( 0  e.  ZZ  ->  ( ZZ  \  ( ZZ>= `  (
0  +  1 ) ) )  ~~  om )
1210, 11ax-mp 5 . . . . . . . 8  |-  ( ZZ 
\  ( ZZ>= `  (
0  +  1 ) ) )  ~~  om
139, 12eqbrtri 4674 . . . . . . 7  |-  ( ZZ 
\  NN )  ~~  om
14 enfi 8176 . . . . . . 7  |-  ( ( ZZ  \  NN ) 
~~  om  ->  ( ( ZZ  \  NN )  e.  Fin  <->  om  e.  Fin ) )
1513, 14ax-mp 5 . . . . . 6  |-  ( ( ZZ  \  NN )  e.  Fin  <->  om  e.  Fin )
164, 15mtbir 313 . . . . 5  |-  -.  ( ZZ  \  NN )  e. 
Fin
17 incom 3805 . . . . . 6  |-  ( ( ZZ  \  NN )  i^i  NN )  =  ( NN  i^i  ( ZZ  \  NN ) )
18 disjdif 4040 . . . . . 6  |-  ( NN 
i^i  ( ZZ  \  NN ) )  =  (/)
1917, 18eqtri 2644 . . . . 5  |-  ( ( ZZ  \  NN )  i^i  NN )  =  (/)
203, 16, 19eldioph4b 37375 . . . 4  |-  ( S  e.  (Dioph `  N
)  <->  ( N  e. 
NN0  /\  E. b  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  ( 1 ... N
) ) ) S  =  { c  e.  ( NN0  ^m  (
1 ... N ) )  |  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `  (
c  u.  d ) )  =  0 } ) )
21 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( ( M  e.  NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  ->  a  e.  ( NN0  ^m  ( 1 ... M ) ) )
22 simp-4r 807 . . . . . . . . . . . 12  |-  ( ( ( ( ( M  e.  NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  ->  F :
( 1 ... N
) --> ( 1 ... M ) )
23 ovex 6678 . . . . . . . . . . . . 13  |-  ( 1 ... N )  e. 
_V
2423mapco2 37278 . . . . . . . . . . . 12  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... M ) )  /\  F : ( 1 ... N ) --> ( 1 ... M ) )  ->  ( a  o.  F )  e.  ( NN0  ^m  ( 1 ... N ) ) )
2521, 22, 24syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ( ( M  e.  NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  ->  ( a  o.  F )  e.  ( NN0  ^m  ( 1 ... N ) ) )
26 uneq1 3760 . . . . . . . . . . . . . . 15  |-  ( c  =  ( a  o.  F )  ->  (
c  u.  d )  =  ( ( a  o.  F )  u.  d ) )
2726fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( c  =  ( a  o.  F )  ->  (
b `  ( c  u.  d ) )  =  ( b `  (
( a  o.  F
)  u.  d ) ) )
2827eqeq1d 2624 . . . . . . . . . . . . 13  |-  ( c  =  ( a  o.  F )  ->  (
( b `  (
c  u.  d ) )  =  0  <->  (
b `  ( (
a  o.  F )  u.  d ) )  =  0 ) )
2928rexbidv 3052 . . . . . . . . . . . 12  |-  ( c  =  ( a  o.  F )  ->  ( E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `
 ( c  u.  d ) )  =  0  <->  E. d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) ( b `  (
( a  o.  F
)  u.  d ) )  =  0 ) )
3029elrab3 3364 . . . . . . . . . . 11  |-  ( ( a  o.  F )  e.  ( NN0  ^m  ( 1 ... N
) )  ->  (
( a  o.  F
)  e.  { c  e.  ( NN0  ^m  ( 1 ... N
) )  |  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `
 ( c  u.  d ) )  =  0 }  <->  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `  (
( a  o.  F
)  u.  d ) )  =  0 ) )
3125, 30syl 17 . . . . . . . . . 10  |-  ( ( ( ( ( M  e.  NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  ->  ( (
a  o.  F )  e.  { c  e.  ( NN0  ^m  (
1 ... N ) )  |  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `  (
c  u.  d ) )  =  0 }  <->  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `
 ( ( a  o.  F )  u.  d ) )  =  0 ) )
32 simp-5r 809 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  NN0  /\  F : ( 1 ... N ) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  (
1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  /\  d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) )  ->  F :
( 1 ... N
) --> ( 1 ... M ) )
33 simplr 792 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  NN0  /\  F : ( 1 ... N ) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  (
1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  /\  d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) )  ->  a  e.  ( NN0  ^m  ( 1 ... M ) ) )
34 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  NN0  /\  F : ( 1 ... N ) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  (
1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  /\  d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) )  ->  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )
35 coundi 5636 . . . . . . . . . . . . . . . 16  |-  ( ( a  u.  d )  o.  ( F  u.  (  _I  |`  ( ZZ 
\  NN ) ) ) )  =  ( ( ( a  u.  d )  o.  F
)  u.  ( ( a  u.  d )  o.  (  _I  |`  ( ZZ  \  NN ) ) ) )
36 coundir 5637 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a  u.  d )  o.  F )  =  ( ( a  o.  F )  u.  (
d  o.  F ) )
37 elmapi 7879 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( d  e.  ( NN0  ^m  ( ZZ  \  NN ) )  ->  d :
( ZZ  \  NN )
--> NN0 )
38373ad2ant3 1084 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  d :
( ZZ  \  NN )
--> NN0 )
39 simp1 1061 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  F :
( 1 ... N
) --> ( 1 ... M ) )
40 incom 3805 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ZZ  \  NN )  i^i  ( 1 ... M ) )  =  ( ( 1 ... M )  i^i  ( ZZ  \  NN ) )
41 fz1ssnn 12372 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 1 ... M )  C_  NN
42 ssdisj 4026 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( 1 ... M
)  C_  NN  /\  ( NN  i^i  ( ZZ  \  NN ) )  =  (/) )  ->  ( ( 1 ... M )  i^i  ( ZZ  \  NN ) )  =  (/) )
4341, 18, 42mp2an 708 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 1 ... M )  i^i  ( ZZ  \  NN ) )  =  (/)
4440, 43eqtri 2644 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ZZ  \  NN )  i^i  ( 1 ... M ) )  =  (/)
4544a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  ( ( ZZ  \  NN )  i^i  ( 1 ... M
) )  =  (/) )
46 coeq0i 37316 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( d : ( ZZ 
\  NN ) --> NN0 
/\  F : ( 1 ... N ) --> ( 1 ... M
)  /\  ( ( ZZ  \  NN )  i^i  ( 1 ... M
) )  =  (/) )  ->  ( d  o.  F )  =  (/) )
4738, 39, 45, 46syl3anc 1326 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  ( d  o.  F )  =  (/) )
4847uneq2d 3767 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  ( (
a  o.  F )  u.  ( d  o.  F ) )  =  ( ( a  o.  F )  u.  (/) ) )
4936, 48syl5eq 2668 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  ( (
a  u.  d )  o.  F )  =  ( ( a  o.  F )  u.  (/) ) )
50 un0 3967 . . . . . . . . . . . . . . . . . 18  |-  ( ( a  o.  F )  u.  (/) )  =  ( a  o.  F )
5149, 50syl6eq 2672 . . . . . . . . . . . . . . . . 17  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  ( (
a  u.  d )  o.  F )  =  ( a  o.  F
) )
52 coundir 5637 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a  u.  d )  o.  (  _I  |`  ( ZZ  \  NN ) ) )  =  ( ( a  o.  (  _I  |`  ( ZZ  \  NN ) ) )  u.  ( d  o.  (  _I  |`  ( ZZ  \  NN ) ) ) )
53 elmapi 7879 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( a  e.  ( NN0  ^m  ( 1 ... M
) )  ->  a : ( 1 ... M ) --> NN0 )
54533ad2ant2 1083 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  a :
( 1 ... M
) --> NN0 )
55 f1oi 6174 . . . . . . . . . . . . . . . . . . . . . . 23  |-  (  _I  |`  ( ZZ  \  NN ) ) : ( ZZ  \  NN ) -1-1-onto-> ( ZZ  \  NN )
56 f1of 6137 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (  _I  |`  ( ZZ  \  NN ) ) : ( ZZ  \  NN )
-1-1-onto-> ( ZZ  \  NN )  ->  (  _I  |`  ( ZZ  \  NN ) ) : ( ZZ  \  NN ) --> ( ZZ  \  NN ) )
5755, 56ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22  |-  (  _I  |`  ( ZZ  \  NN ) ) : ( ZZ  \  NN ) --> ( ZZ  \  NN )
58 coeq0i 37316 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( a : ( 1 ... M ) --> NN0 
/\  (  _I  |`  ( ZZ  \  NN ) ) : ( ZZ  \  NN ) --> ( ZZ  \  NN )  /\  (
( 1 ... M
)  i^i  ( ZZ  \  NN ) )  =  (/) )  ->  ( a  o.  (  _I  |`  ( ZZ  \  NN ) ) )  =  (/) )
5957, 43, 58mp3an23 1416 . . . . . . . . . . . . . . . . . . . . 21  |-  ( a : ( 1 ... M ) --> NN0  ->  ( a  o.  (  _I  |`  ( ZZ  \  NN ) ) )  =  (/) )
6054, 59syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  ( a  o.  (  _I  |`  ( ZZ  \  NN ) ) )  =  (/) )
61 coires1 5653 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( d  o.  (  _I  |`  ( ZZ  \  NN ) ) )  =  ( d  |`  ( ZZ  \  NN ) )
62 ffn 6045 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( d : ( ZZ  \  NN ) --> NN0  ->  d  Fn  ( ZZ  \  NN ) )
63 fnresdm 6000 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( d  Fn  ( ZZ  \  NN )  ->  ( d  |`  ( ZZ  \  NN ) )  =  d )
6437, 62, 633syl 18 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( d  e.  ( NN0  ^m  ( ZZ  \  NN ) )  ->  ( d  |`  ( ZZ  \  NN ) )  =  d )
6561, 64syl5eq 2668 . . . . . . . . . . . . . . . . . . . . 21  |-  ( d  e.  ( NN0  ^m  ( ZZ  \  NN ) )  ->  ( d  o.  (  _I  |`  ( ZZ  \  NN ) ) )  =  d )
66653ad2ant3 1084 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  ( d  o.  (  _I  |`  ( ZZ  \  NN ) ) )  =  d )
6760, 66uneq12d 3768 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  ( (
a  o.  (  _I  |`  ( ZZ  \  NN ) ) )  u.  ( d  o.  (  _I  |`  ( ZZ  \  NN ) ) ) )  =  ( (/)  u.  d
) )
6852, 67syl5eq 2668 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  ( (
a  u.  d )  o.  (  _I  |`  ( ZZ  \  NN ) ) )  =  ( (/)  u.  d ) )
69 uncom 3757 . . . . . . . . . . . . . . . . . . 19  |-  ( (/)  u.  d )  =  ( d  u.  (/) )
70 un0 3967 . . . . . . . . . . . . . . . . . . 19  |-  ( d  u.  (/) )  =  d
7169, 70eqtri 2644 . . . . . . . . . . . . . . . . . 18  |-  ( (/)  u.  d )  =  d
7268, 71syl6eq 2672 . . . . . . . . . . . . . . . . 17  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  ( (
a  u.  d )  o.  (  _I  |`  ( ZZ  \  NN ) ) )  =  d )
7351, 72uneq12d 3768 . . . . . . . . . . . . . . . 16  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  ( (
( a  u.  d
)  o.  F )  u.  ( ( a  u.  d )  o.  (  _I  |`  ( ZZ  \  NN ) ) ) )  =  ( ( a  o.  F
)  u.  d ) )
7435, 73syl5req 2669 . . . . . . . . . . . . . . 15  |-  ( ( F : ( 1 ... N ) --> ( 1 ... M )  /\  a  e.  ( NN0  ^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) )  ->  ( (
a  o.  F )  u.  d )  =  ( ( a  u.  d )  o.  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) ) )
7532, 33, 34, 74syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( M  e.  NN0  /\  F : ( 1 ... N ) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  (
1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  /\  d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) )  ->  ( (
a  o.  F )  u.  d )  =  ( ( a  u.  d )  o.  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) ) )
7675fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( M  e.  NN0  /\  F : ( 1 ... N ) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  (
1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  /\  d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) )  ->  ( b `  ( ( a  o.  F )  u.  d
) )  =  ( b `  ( ( a  u.  d )  o.  ( F  u.  (  _I  |`  ( ZZ 
\  NN ) ) ) ) ) )
77 nn0ssz 11398 . . . . . . . . . . . . . . . . 17  |-  NN0  C_  ZZ
78 mapss 7900 . . . . . . . . . . . . . . . . 17  |-  ( ( ZZ  e.  _V  /\  NN0  C_  ZZ )  ->  ( NN0  ^m  ( ( ZZ 
\  NN )  u.  ( 1 ... M
) ) )  C_  ( ZZ  ^m  (
( ZZ  \  NN )  u.  ( 1 ... M ) ) ) )
791, 77, 78mp2an 708 . . . . . . . . . . . . . . . 16  |-  ( NN0 
^m  ( ( ZZ 
\  NN )  u.  ( 1 ... M
) ) )  C_  ( ZZ  ^m  (
( ZZ  \  NN )  u.  ( 1 ... M ) ) )
8043reseq2i 5393 . . . . . . . . . . . . . . . . . . 19  |-  ( a  |`  ( ( 1 ... M )  i^i  ( ZZ  \  NN ) ) )  =  ( a  |`  (/) )
81 res0 5400 . . . . . . . . . . . . . . . . . . 19  |-  ( a  |`  (/) )  =  (/)
8280, 81eqtri 2644 . . . . . . . . . . . . . . . . . 18  |-  ( a  |`  ( ( 1 ... M )  i^i  ( ZZ  \  NN ) ) )  =  (/)
8343reseq2i 5393 . . . . . . . . . . . . . . . . . . 19  |-  ( d  |`  ( ( 1 ... M )  i^i  ( ZZ  \  NN ) ) )  =  ( d  |`  (/) )
84 res0 5400 . . . . . . . . . . . . . . . . . . 19  |-  ( d  |`  (/) )  =  (/)
8583, 84eqtri 2644 . . . . . . . . . . . . . . . . . 18  |-  ( d  |`  ( ( 1 ... M )  i^i  ( ZZ  \  NN ) ) )  =  (/)
8682, 85eqtr4i 2647 . . . . . . . . . . . . . . . . 17  |-  ( a  |`  ( ( 1 ... M )  i^i  ( ZZ  \  NN ) ) )  =  ( d  |`  ( ( 1 ... M )  i^i  ( ZZ  \  NN ) ) )
87 elmapresaun 37334 . . . . . . . . . . . . . . . . . 18  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ  \  NN ) )  /\  (
a  |`  ( ( 1 ... M )  i^i  ( ZZ  \  NN ) ) )  =  ( d  |`  (
( 1 ... M
)  i^i  ( ZZ  \  NN ) ) ) )  ->  ( a  u.  d )  e.  ( NN0  ^m  ( ( 1 ... M )  u.  ( ZZ  \  NN ) ) ) )
88 uncom 3757 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1 ... M )  u.  ( ZZ  \  NN ) )  =  ( ( ZZ  \  NN )  u.  ( 1 ... M ) )
8988oveq2i 6661 . . . . . . . . . . . . . . . . . 18  |-  ( NN0 
^m  ( ( 1 ... M )  u.  ( ZZ  \  NN ) ) )  =  ( NN0  ^m  (
( ZZ  \  NN )  u.  ( 1 ... M ) ) )
9087, 89syl6eleq 2711 . . . . . . . . . . . . . . . . 17  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ  \  NN ) )  /\  (
a  |`  ( ( 1 ... M )  i^i  ( ZZ  \  NN ) ) )  =  ( d  |`  (
( 1 ... M
)  i^i  ( ZZ  \  NN ) ) ) )  ->  ( a  u.  d )  e.  ( NN0  ^m  ( ( ZZ  \  NN )  u.  ( 1 ... M ) ) ) )
9186, 90mp3an3 1413 . . . . . . . . . . . . . . . 16  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) )  -> 
( a  u.  d
)  e.  ( NN0 
^m  ( ( ZZ 
\  NN )  u.  ( 1 ... M
) ) ) )
9279, 91sseldi 3601 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... M ) )  /\  d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) )  -> 
( a  u.  d
)  e.  ( ZZ 
^m  ( ( ZZ 
\  NN )  u.  ( 1 ... M
) ) ) )
9392adantll 750 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( M  e.  NN0  /\  F : ( 1 ... N ) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  (
1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  /\  d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) )  ->  ( a  u.  d )  e.  ( ZZ  ^m  ( ( ZZ  \  NN )  u.  ( 1 ... M ) ) ) )
94 coeq1 5279 . . . . . . . . . . . . . . . 16  |-  ( e  =  ( a  u.  d )  ->  (
e  o.  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) )  =  ( ( a  u.  d
)  o.  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) ) )
9594fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( e  =  ( a  u.  d )  ->  (
b `  ( e  o.  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) ) )  =  ( b `
 ( ( a  u.  d )  o.  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) ) ) )
96 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( e  e.  ( ZZ  ^m  ( ( ZZ  \  NN )  u.  (
1 ... M ) ) )  |->  ( b `  ( e  o.  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) ) ) )  =  ( e  e.  ( ZZ 
^m  ( ( ZZ 
\  NN )  u.  ( 1 ... M
) ) )  |->  ( b `  ( e  o.  ( F  u.  (  _I  |`  ( ZZ 
\  NN ) ) ) ) ) )
97 fvex 6201 . . . . . . . . . . . . . . 15  |-  ( b `
 ( ( a  u.  d )  o.  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) ) )  e.  _V
9895, 96, 97fvmpt 6282 . . . . . . . . . . . . . 14  |-  ( ( a  u.  d )  e.  ( ZZ  ^m  ( ( ZZ  \  NN )  u.  (
1 ... M ) ) )  ->  ( (
e  e.  ( ZZ 
^m  ( ( ZZ 
\  NN )  u.  ( 1 ... M
) ) )  |->  ( b `  ( e  o.  ( F  u.  (  _I  |`  ( ZZ 
\  NN ) ) ) ) ) ) `
 ( a  u.  d ) )  =  ( b `  (
( a  u.  d
)  o.  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) ) ) )
9993, 98syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( M  e.  NN0  /\  F : ( 1 ... N ) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  (
1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  /\  d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) )  ->  ( (
e  e.  ( ZZ 
^m  ( ( ZZ 
\  NN )  u.  ( 1 ... M
) ) )  |->  ( b `  ( e  o.  ( F  u.  (  _I  |`  ( ZZ 
\  NN ) ) ) ) ) ) `
 ( a  u.  d ) )  =  ( b `  (
( a  u.  d
)  o.  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) ) ) )
10076, 99eqtr4d 2659 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( M  e.  NN0  /\  F : ( 1 ... N ) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  (
1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  /\  d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) )  ->  ( b `  ( ( a  o.  F )  u.  d
) )  =  ( ( e  e.  ( ZZ  ^m  ( ( ZZ  \  NN )  u.  ( 1 ... M ) ) ) 
|->  ( b `  (
e  o.  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) ) ) ) `
 ( a  u.  d ) ) )
101100eqeq1d 2624 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  NN0  /\  F : ( 1 ... N ) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  (
1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  /\  d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) )  ->  ( (
b `  ( (
a  o.  F )  u.  d ) )  =  0  <->  ( (
e  e.  ( ZZ 
^m  ( ( ZZ 
\  NN )  u.  ( 1 ... M
) ) )  |->  ( b `  ( e  o.  ( F  u.  (  _I  |`  ( ZZ 
\  NN ) ) ) ) ) ) `
 ( a  u.  d ) )  =  0 ) )
102101rexbidva 3049 . . . . . . . . . 10  |-  ( ( ( ( ( M  e.  NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  ->  ( E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `
 ( ( a  o.  F )  u.  d ) )  =  0  <->  E. d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) ( ( e  e.  ( ZZ  ^m  (
( ZZ  \  NN )  u.  ( 1 ... M ) ) )  |->  ( b `  ( e  o.  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) ) ) ) `  (
a  u.  d ) )  =  0 ) )
10331, 102bitrd 268 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  /\  a  e.  ( NN0  ^m  (
1 ... M ) ) )  ->  ( (
a  o.  F )  e.  { c  e.  ( NN0  ^m  (
1 ... N ) )  |  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `  (
c  u.  d ) )  =  0 }  <->  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( ( e  e.  ( ZZ 
^m  ( ( ZZ 
\  NN )  u.  ( 1 ... M
) ) )  |->  ( b `  ( e  o.  ( F  u.  (  _I  |`  ( ZZ 
\  NN ) ) ) ) ) ) `
 ( a  u.  d ) )  =  0 ) )
104103rabbidva 3188 . . . . . . . 8  |-  ( ( ( ( M  e. 
NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... M
) )  |  ( a  o.  F )  e.  { c  e.  ( NN0  ^m  (
1 ... N ) )  |  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `  (
c  u.  d ) )  =  0 } }  =  { a  e.  ( NN0  ^m  ( 1 ... M
) )  |  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( ( e  e.  ( ZZ 
^m  ( ( ZZ 
\  NN )  u.  ( 1 ... M
) ) )  |->  ( b `  ( e  o.  ( F  u.  (  _I  |`  ( ZZ 
\  NN ) ) ) ) ) ) `
 ( a  u.  d ) )  =  0 } )
105 simplll 798 . . . . . . . . 9  |-  ( ( ( ( M  e. 
NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  ->  M  e.  NN0 )
106 ovex 6678 . . . . . . . . . . . 12  |-  ( 1 ... M )  e. 
_V
1073, 106unex 6956 . . . . . . . . . . 11  |-  ( ( ZZ  \  NN )  u.  ( 1 ... M ) )  e. 
_V
108107a1i 11 . . . . . . . . . 10  |-  ( ( ( ( M  e. 
NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  ->  (
( ZZ  \  NN )  u.  ( 1 ... M ) )  e.  _V )
109 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( M  e. 
NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  ->  b  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  ( 1 ... N
) ) ) )
11057a1i 11 . . . . . . . . . . . . 13  |-  ( F : ( 1 ... N ) --> ( 1 ... M )  -> 
(  _I  |`  ( ZZ  \  NN ) ) : ( ZZ  \  NN ) --> ( ZZ  \  NN ) )
111 id 22 . . . . . . . . . . . . 13  |-  ( F : ( 1 ... N ) --> ( 1 ... M )  ->  F : ( 1 ... N ) --> ( 1 ... M ) )
112 incom 3805 . . . . . . . . . . . . . . 15  |-  ( ( ZZ  \  NN )  i^i  ( 1 ... N ) )  =  ( ( 1 ... N )  i^i  ( ZZ  \  NN ) )
113 fz1ssnn 12372 . . . . . . . . . . . . . . . 16  |-  ( 1 ... N )  C_  NN
114 ssdisj 4026 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1 ... N
)  C_  NN  /\  ( NN  i^i  ( ZZ  \  NN ) )  =  (/) )  ->  ( ( 1 ... N )  i^i  ( ZZ  \  NN ) )  =  (/) )
115113, 18, 114mp2an 708 . . . . . . . . . . . . . . 15  |-  ( ( 1 ... N )  i^i  ( ZZ  \  NN ) )  =  (/)
116112, 115eqtri 2644 . . . . . . . . . . . . . 14  |-  ( ( ZZ  \  NN )  i^i  ( 1 ... N ) )  =  (/)
117116a1i 11 . . . . . . . . . . . . 13  |-  ( F : ( 1 ... N ) --> ( 1 ... M )  -> 
( ( ZZ  \  NN )  i^i  (
1 ... N ) )  =  (/) )
118 fun 6066 . . . . . . . . . . . . 13  |-  ( ( ( (  _I  |`  ( ZZ  \  NN ) ) : ( ZZ  \  NN ) --> ( ZZ  \  NN )  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  ( ( ZZ  \  NN )  i^i  (
1 ... N ) )  =  (/) )  ->  (
(  _I  |`  ( ZZ  \  NN ) )  u.  F ) : ( ( ZZ  \  NN )  u.  (
1 ... N ) ) --> ( ( ZZ  \  NN )  u.  (
1 ... M ) ) )
119110, 111, 117, 118syl21anc 1325 . . . . . . . . . . . 12  |-  ( F : ( 1 ... N ) --> ( 1 ... M )  -> 
( (  _I  |`  ( ZZ  \  NN ) )  u.  F ) : ( ( ZZ  \  NN )  u.  (
1 ... N ) ) --> ( ( ZZ  \  NN )  u.  (
1 ... M ) ) )
120 uncom 3757 . . . . . . . . . . . . 13  |-  ( (  _I  |`  ( ZZ  \  NN ) )  u.  F )  =  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) )
121120feq1i 6036 . . . . . . . . . . . 12  |-  ( ( (  _I  |`  ( ZZ  \  NN ) )  u.  F ) : ( ( ZZ  \  NN )  u.  (
1 ... N ) ) --> ( ( ZZ  \  NN )  u.  (
1 ... M ) )  <-> 
( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) : ( ( ZZ  \  NN )  u.  (
1 ... N ) ) --> ( ( ZZ  \  NN )  u.  (
1 ... M ) ) )
122119, 121sylib 208 . . . . . . . . . . 11  |-  ( F : ( 1 ... N ) --> ( 1 ... M )  -> 
( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) : ( ( ZZ  \  NN )  u.  (
1 ... N ) ) --> ( ( ZZ  \  NN )  u.  (
1 ... M ) ) )
123122ad3antlr 767 . . . . . . . . . 10  |-  ( ( ( ( M  e. 
NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  ->  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) : ( ( ZZ  \  NN )  u.  (
1 ... N ) ) --> ( ( ZZ  \  NN )  u.  (
1 ... M ) ) )
124 mzprename 37312 . . . . . . . . . 10  |-  ( ( ( ( ZZ  \  NN )  u.  (
1 ... M ) )  e.  _V  /\  b  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  ( 1 ... N
) ) )  /\  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) : ( ( ZZ  \  NN )  u.  (
1 ... N ) ) --> ( ( ZZ  \  NN )  u.  (
1 ... M ) ) )  ->  ( e  e.  ( ZZ  ^m  (
( ZZ  \  NN )  u.  ( 1 ... M ) ) )  |->  ( b `  ( e  o.  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) ) ) )  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  (
1 ... M ) ) ) )
125108, 109, 123, 124syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ( M  e. 
NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  ->  (
e  e.  ( ZZ 
^m  ( ( ZZ 
\  NN )  u.  ( 1 ... M
) ) )  |->  ( b `  ( e  o.  ( F  u.  (  _I  |`  ( ZZ 
\  NN ) ) ) ) ) )  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... M ) ) ) )
1263, 16, 19eldioph4i 37376 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  ( e  e.  ( ZZ  ^m  ( ( ZZ  \  NN )  u.  ( 1 ... M ) ) ) 
|->  ( b `  (
e  o.  ( F  u.  (  _I  |`  ( ZZ  \  NN ) ) ) ) ) )  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... M ) ) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... M
) )  |  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( ( e  e.  ( ZZ 
^m  ( ( ZZ 
\  NN )  u.  ( 1 ... M
) ) )  |->  ( b `  ( e  o.  ( F  u.  (  _I  |`  ( ZZ 
\  NN ) ) ) ) ) ) `
 ( a  u.  d ) )  =  0 }  e.  (Dioph `  M ) )
127105, 125, 126syl2anc 693 . . . . . . . 8  |-  ( ( ( ( M  e. 
NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... M
) )  |  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( ( e  e.  ( ZZ 
^m  ( ( ZZ 
\  NN )  u.  ( 1 ... M
) ) )  |->  ( b `  ( e  o.  ( F  u.  (  _I  |`  ( ZZ 
\  NN ) ) ) ) ) ) `
 ( a  u.  d ) )  =  0 }  e.  (Dioph `  M ) )
128104, 127eqeltrd 2701 . . . . . . 7  |-  ( ( ( ( M  e. 
NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... M
) )  |  ( a  o.  F )  e.  { c  e.  ( NN0  ^m  (
1 ... N ) )  |  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `  (
c  u.  d ) )  =  0 } }  e.  (Dioph `  M ) )
129 eleq2 2690 . . . . . . . . 9  |-  ( S  =  { c  e.  ( NN0  ^m  (
1 ... N ) )  |  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `  (
c  u.  d ) )  =  0 }  ->  ( ( a  o.  F )  e.  S  <->  ( a  o.  F )  e.  {
c  e.  ( NN0 
^m  ( 1 ... N ) )  |  E. d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) ( b `  (
c  u.  d ) )  =  0 } ) )
130129rabbidv 3189 . . . . . . . 8  |-  ( S  =  { c  e.  ( NN0  ^m  (
1 ... N ) )  |  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `  (
c  u.  d ) )  =  0 }  ->  { a  e.  ( NN0  ^m  (
1 ... M ) )  |  ( a  o.  F )  e.  S }  =  { a  e.  ( NN0  ^m  (
1 ... M ) )  |  ( a  o.  F )  e.  {
c  e.  ( NN0 
^m  ( 1 ... N ) )  |  E. d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) ( b `  (
c  u.  d ) )  =  0 } } )
131130eleq1d 2686 . . . . . . 7  |-  ( S  =  { c  e.  ( NN0  ^m  (
1 ... N ) )  |  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `  (
c  u.  d ) )  =  0 }  ->  ( { a  e.  ( NN0  ^m  ( 1 ... M
) )  |  ( a  o.  F )  e.  S }  e.  (Dioph `  M )  <->  { a  e.  ( NN0  ^m  (
1 ... M ) )  |  ( a  o.  F )  e.  {
c  e.  ( NN0 
^m  ( 1 ... N ) )  |  E. d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) ( b `  (
c  u.  d ) )  =  0 } }  e.  (Dioph `  M ) ) )
132128, 131syl5ibrcom 237 . . . . . 6  |-  ( ( ( ( M  e. 
NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  /\  N  e.  NN0 )  /\  b  e.  (mzPoly `  (
( ZZ  \  NN )  u.  ( 1 ... N ) ) ) )  ->  ( S  =  { c  e.  ( NN0  ^m  (
1 ... N ) )  |  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `  (
c  u.  d ) )  =  0 }  ->  { a  e.  ( NN0  ^m  (
1 ... M ) )  |  ( a  o.  F )  e.  S }  e.  (Dioph `  M
) ) )
133132rexlimdva 3031 . . . . 5  |-  ( ( ( M  e.  NN0  /\  F : ( 1 ... N ) --> ( 1 ... M ) )  /\  N  e. 
NN0 )  ->  ( E. b  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  (
1 ... N ) ) ) S  =  {
c  e.  ( NN0 
^m  ( 1 ... N ) )  |  E. d  e.  ( NN0  ^m  ( ZZ 
\  NN ) ) ( b `  (
c  u.  d ) )  =  0 }  ->  { a  e.  ( NN0  ^m  (
1 ... M ) )  |  ( a  o.  F )  e.  S }  e.  (Dioph `  M
) ) )
134133expimpd 629 . . . 4  |-  ( ( M  e.  NN0  /\  F : ( 1 ... N ) --> ( 1 ... M ) )  ->  ( ( N  e.  NN0  /\  E. b  e.  (mzPoly `  ( ( ZZ  \  NN )  u.  ( 1 ... N
) ) ) S  =  { c  e.  ( NN0  ^m  (
1 ... N ) )  |  E. d  e.  ( NN0  ^m  ( ZZ  \  NN ) ) ( b `  (
c  u.  d ) )  =  0 } )  ->  { a  e.  ( NN0  ^m  (
1 ... M ) )  |  ( a  o.  F )  e.  S }  e.  (Dioph `  M
) ) )
13520, 134syl5bi 232 . . 3  |-  ( ( M  e.  NN0  /\  F : ( 1 ... N ) --> ( 1 ... M ) )  ->  ( S  e.  (Dioph `  N )  ->  { a  e.  ( NN0  ^m  ( 1 ... M ) )  |  ( a  o.  F )  e.  S }  e.  (Dioph `  M
) ) )
136135impcom 446 . 2  |-  ( ( S  e.  (Dioph `  N )  /\  ( M  e.  NN0  /\  F : ( 1 ... N ) --> ( 1 ... M ) ) )  ->  { a  e.  ( NN0  ^m  (
1 ... M ) )  |  ( a  o.  F )  e.  S }  e.  (Dioph `  M
) )
1371363impb 1260 1  |-  ( ( S  e.  (Dioph `  N )  /\  M  e.  NN0  /\  F :
( 1 ... N
) --> ( 1 ... M ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... M ) )  |  ( a  o.  F )  e.  S }  e.  (Dioph `  M
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729    _I cid 5023    |` cres 5116    o. ccom 5118    Fn wfn 5883   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   omcom 7065    ^m cmap 7857    ~~ cen 7952   Fincfn 7955   0cc0 9936   1c1 9937    + caddc 9939   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  mzPolycmzp 37285  Diophcdioph 37318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-mzpcl 37286  df-mzp 37287  df-dioph 37319
This theorem is referenced by:  rabrenfdioph  37378
  Copyright terms: Public domain W3C validator