MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sshauslem Structured version   Visualization version   Unicode version

Theorem sshauslem 21176
Description: Lemma for sshaus 21179 and similar theorems. If the topological property  A is preserved under injective preimages, then a topology finer than one with property  A also has property  A. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypotheses
Ref Expression
t1sep.1  |-  X  = 
U. J
sshauslem.2  |-  ( J  e.  A  ->  J  e.  Top )
sshauslem.3  |-  ( ( J  e.  A  /\  (  _I  |`  X ) : X -1-1-> X  /\  (  _I  |`  X )  e.  ( K  Cn  J ) )  ->  K  e.  A )
Assertion
Ref Expression
sshauslem  |-  ( ( J  e.  A  /\  K  e.  (TopOn `  X
)  /\  J  C_  K
)  ->  K  e.  A )

Proof of Theorem sshauslem
StepHypRef Expression
1 simp1 1061 . 2  |-  ( ( J  e.  A  /\  K  e.  (TopOn `  X
)  /\  J  C_  K
)  ->  J  e.  A )
2 f1oi 6174 . . 3  |-  (  _I  |`  X ) : X -1-1-onto-> X
3 f1of1 6136 . . 3  |-  ( (  _I  |`  X ) : X -1-1-onto-> X  ->  (  _I  |`  X ) : X -1-1-> X )
42, 3mp1i 13 . 2  |-  ( ( J  e.  A  /\  K  e.  (TopOn `  X
)  /\  J  C_  K
)  ->  (  _I  |`  X ) : X -1-1-> X )
5 simp3 1063 . . 3  |-  ( ( J  e.  A  /\  K  e.  (TopOn `  X
)  /\  J  C_  K
)  ->  J  C_  K
)
6 simp2 1062 . . . 4  |-  ( ( J  e.  A  /\  K  e.  (TopOn `  X
)  /\  J  C_  K
)  ->  K  e.  (TopOn `  X ) )
7 sshauslem.2 . . . . . 6  |-  ( J  e.  A  ->  J  e.  Top )
873ad2ant1 1082 . . . . 5  |-  ( ( J  e.  A  /\  K  e.  (TopOn `  X
)  /\  J  C_  K
)  ->  J  e.  Top )
9 t1sep.1 . . . . . 6  |-  X  = 
U. J
109toptopon 20722 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
118, 10sylib 208 . . . 4  |-  ( ( J  e.  A  /\  K  e.  (TopOn `  X
)  /\  J  C_  K
)  ->  J  e.  (TopOn `  X ) )
12 ssidcn 21059 . . . 4  |-  ( ( K  e.  (TopOn `  X )  /\  J  e.  (TopOn `  X )
)  ->  ( (  _I  |`  X )  e.  ( K  Cn  J
)  <->  J  C_  K ) )
136, 11, 12syl2anc 693 . . 3  |-  ( ( J  e.  A  /\  K  e.  (TopOn `  X
)  /\  J  C_  K
)  ->  ( (  _I  |`  X )  e.  ( K  Cn  J
)  <->  J  C_  K ) )
145, 13mpbird 247 . 2  |-  ( ( J  e.  A  /\  K  e.  (TopOn `  X
)  /\  J  C_  K
)  ->  (  _I  |`  X )  e.  ( K  Cn  J ) )
15 sshauslem.3 . 2  |-  ( ( J  e.  A  /\  (  _I  |`  X ) : X -1-1-> X  /\  (  _I  |`  X )  e.  ( K  Cn  J ) )  ->  K  e.  A )
161, 4, 14, 15syl3anc 1326 1  |-  ( ( J  e.  A  /\  K  e.  (TopOn `  X
)  /\  J  C_  K
)  ->  K  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   U.cuni 4436    _I cid 5023    |` cres 5116   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   Topctop 20698  TopOnctopon 20715    Cn ccn 21028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-top 20699  df-topon 20716  df-cn 21031
This theorem is referenced by:  sst0  21177  sst1  21178  sshaus  21179
  Copyright terms: Public domain W3C validator