MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqopab2b Structured version   Visualization version   Unicode version

Theorem eqopab2b 5005
Description: Equivalence of ordered pair abstraction equality and biconditional. (Contributed by Mario Carneiro, 4-Jan-2017.)
Assertion
Ref Expression
eqopab2b  |-  ( {
<. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  ps }  <->  A. x A. y ( ph  <->  ps )
)

Proof of Theorem eqopab2b
StepHypRef Expression
1 ssopab2b 5002 . . 3  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps } 
<-> 
A. x A. y
( ph  ->  ps )
)
2 ssopab2b 5002 . . 3  |-  ( {
<. x ,  y >.  |  ps }  C_  { <. x ,  y >.  |  ph } 
<-> 
A. x A. y
( ps  ->  ph )
)
31, 2anbi12i 733 . 2  |-  ( ( { <. x ,  y
>.  |  ph }  C_  {
<. x ,  y >.  |  ps }  /\  { <. x ,  y >.  |  ps }  C_  { <. x ,  y >.  |  ph } )  <->  ( A. x A. y ( ph  ->  ps )  /\  A. x A. y ( ps 
->  ph ) ) )
4 eqss 3618 . 2  |-  ( {
<. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  ps }  <->  ( { <. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps }  /\  { <. x ,  y >.  |  ps }  C_  { <. x ,  y >.  |  ph } ) )
5 2albiim 1817 . 2  |-  ( A. x A. y ( ph  <->  ps )  <->  ( A. x A. y ( ph  ->  ps )  /\  A. x A. y ( ps  ->  ph ) ) )
63, 4, 53bitr4i 292 1  |-  ( {
<. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  ps }  <->  A. x A. y ( ph  <->  ps )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    C_ wss 3574   {copab 4712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713
This theorem is referenced by:  opabbi  33974  mptbi12f  33975  relexp0eq  37993  mptssid  39450
  Copyright terms: Public domain W3C validator