MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftfval Structured version   Visualization version   Unicode version

Theorem shftfval 13810
Description: The value of the sequence shifter operation is a function on 
CC.  A is ordinarily an integer. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1  |-  F  e. 
_V
Assertion
Ref Expression
shftfval  |-  ( A  e.  CC  ->  ( F  shift  A )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } )
Distinct variable groups:    x, y, A    x, F, y

Proof of Theorem shftfval
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6678 . . . . . . . . . 10  |-  ( x  -  A )  e. 
_V
2 vex 3203 . . . . . . . . . 10  |-  y  e. 
_V
31, 2breldm 5329 . . . . . . . . 9  |-  ( ( x  -  A ) F y  ->  (
x  -  A )  e.  dom  F )
4 npcan 10290 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  A  e.  CC )  ->  ( ( x  -  A )  +  A
)  =  x )
54eqcomd 2628 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  A  e.  CC )  ->  x  =  ( ( x  -  A )  +  A ) )
65ancoms 469 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  x  =  ( ( x  -  A )  +  A ) )
7 oveq1 6657 . . . . . . . . . . 11  |-  ( w  =  ( x  -  A )  ->  (
w  +  A )  =  ( ( x  -  A )  +  A ) )
87eqeq2d 2632 . . . . . . . . . 10  |-  ( w  =  ( x  -  A )  ->  (
x  =  ( w  +  A )  <->  x  =  ( ( x  -  A )  +  A
) ) )
98rspcev 3309 . . . . . . . . 9  |-  ( ( ( x  -  A
)  e.  dom  F  /\  x  =  (
( x  -  A
)  +  A ) )  ->  E. w  e.  dom  F  x  =  ( w  +  A
) )
103, 6, 9syl2anr 495 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  E. w  e.  dom  F  x  =  ( w  +  A
) )
11 vex 3203 . . . . . . . . 9  |-  x  e. 
_V
12 eqeq1 2626 . . . . . . . . . 10  |-  ( z  =  x  ->  (
z  =  ( w  +  A )  <->  x  =  ( w  +  A
) ) )
1312rexbidv 3052 . . . . . . . . 9  |-  ( z  =  x  ->  ( E. w  e.  dom  F  z  =  ( w  +  A )  <->  E. w  e.  dom  F  x  =  ( w  +  A
) ) )
1411, 13elab 3350 . . . . . . . 8  |-  ( x  e.  { z  |  E. w  e.  dom  F  z  =  ( w  +  A ) }  <->  E. w  e.  dom  F  x  =  ( w  +  A ) )
1510, 14sylibr 224 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  x  e.  { z  |  E. w  e.  dom  F  z  =  ( w  +  A
) } )
161, 2brelrn 5356 . . . . . . . 8  |-  ( ( x  -  A ) F y  ->  y  e.  ran  F )
1716adantl 482 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  y  e.  ran  F )
1815, 17jca 554 . . . . . 6  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  ( x  e.  { z  |  E. w  e.  dom  F  z  =  ( w  +  A ) }  /\  y  e.  ran  F ) )
1918expl 648 . . . . 5  |-  ( A  e.  CC  ->  (
( x  e.  CC  /\  ( x  -  A
) F y )  ->  ( x  e. 
{ z  |  E. w  e.  dom  F  z  =  ( w  +  A ) }  /\  y  e.  ran  F ) ) )
2019ssopab2dv 5004 . . . 4  |-  ( A  e.  CC  ->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }  C_  { <. x ,  y >.  |  ( x  e.  { z  |  E. w  e. 
dom  F  z  =  ( w  +  A
) }  /\  y  e.  ran  F ) } )
21 df-xp 5120 . . . 4  |-  ( { z  |  E. w  e.  dom  F  z  =  ( w  +  A
) }  X.  ran  F )  =  { <. x ,  y >.  |  ( x  e.  { z  |  E. w  e. 
dom  F  z  =  ( w  +  A
) }  /\  y  e.  ran  F ) }
2220, 21syl6sseqr 3652 . . 3  |-  ( A  e.  CC  ->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }  C_  ( {
z  |  E. w  e.  dom  F  z  =  ( w  +  A
) }  X.  ran  F ) )
23 shftfval.1 . . . . . 6  |-  F  e. 
_V
2423dmex 7099 . . . . 5  |-  dom  F  e.  _V
2524abrexex 7141 . . . 4  |-  { z  |  E. w  e. 
dom  F  z  =  ( w  +  A
) }  e.  _V
2623rnex 7100 . . . 4  |-  ran  F  e.  _V
2725, 26xpex 6962 . . 3  |-  ( { z  |  E. w  e.  dom  F  z  =  ( w  +  A
) }  X.  ran  F )  e.  _V
28 ssexg 4804 . . 3  |-  ( ( { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }  C_  ( { z  |  E. w  e.  dom  F  z  =  ( w  +  A ) }  X.  ran  F )  /\  ( { z  |  E. w  e.  dom  F  z  =  ( w  +  A ) }  X.  ran  F )  e.  _V )  ->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }  e.  _V )
2922, 27, 28sylancl 694 . 2  |-  ( A  e.  CC  ->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }  e.  _V )
30 breq 4655 . . . . . 6  |-  ( z  =  F  ->  (
( x  -  w
) z y  <->  ( x  -  w ) F y ) )
3130anbi2d 740 . . . . 5  |-  ( z  =  F  ->  (
( x  e.  CC  /\  ( x  -  w
) z y )  <-> 
( x  e.  CC  /\  ( x  -  w
) F y ) ) )
3231opabbidv 4716 . . . 4  |-  ( z  =  F  ->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  w
) z y ) }  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  w
) F y ) } )
33 oveq2 6658 . . . . . . 7  |-  ( w  =  A  ->  (
x  -  w )  =  ( x  -  A ) )
3433breq1d 4663 . . . . . 6  |-  ( w  =  A  ->  (
( x  -  w
) F y  <->  ( x  -  A ) F y ) )
3534anbi2d 740 . . . . 5  |-  ( w  =  A  ->  (
( x  e.  CC  /\  ( x  -  w
) F y )  <-> 
( x  e.  CC  /\  ( x  -  A
) F y ) ) )
3635opabbidv 4716 . . . 4  |-  ( w  =  A  ->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  w
) F y ) }  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } )
37 df-shft 13807 . . . 4  |-  shift  =  ( z  e.  _V ,  w  e.  CC  |->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  w
) z y ) } )
3832, 36, 37ovmpt2g 6795 . . 3  |-  ( ( F  e.  _V  /\  A  e.  CC  /\  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }  e.  _V )  ->  ( F 
shift  A )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } )
3923, 38mp3an1 1411 . 2  |-  ( ( A  e.  CC  /\  {
<. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }  e.  _V )  ->  ( F 
shift  A )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } )
4029, 39mpdan 702 1  |-  ( A  e.  CC  ->  ( F  shift  A )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913   _Vcvv 3200    C_ wss 3574   class class class wbr 4653   {copab 4712    X. cxp 5112   dom cdm 5114   ran crn 5115  (class class class)co 6650   CCcc 9934    + caddc 9939    - cmin 10266    shift cshi 13806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-shft 13807
This theorem is referenced by:  shftdm  13811  shftfib  13812  shftfn  13813  2shfti  13820  shftidt2  13821
  Copyright terms: Public domain W3C validator