MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmval Structured version   Visualization version   Unicode version

Theorem ulmval 24134
Description: Express the predicate: The sequence of functions  F converges uniformly to  G on  S. (Contributed by Mario Carneiro, 26-Feb-2015.)
Assertion
Ref Expression
ulmval  |-  ( S  e.  V  ->  ( F ( ~~> u `  S ) G  <->  E. n  e.  ZZ  ( F :
( ZZ>= `  n ) --> ( CC  ^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
) ) )
Distinct variable groups:    j, k, n, x, z, F    j, G, k, n, x, z    S, j, k, n, x, z    n, V
Allowed substitution hints:    V( x, z, j, k)

Proof of Theorem ulmval
Dummy variables  f 
y  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmrel 24132 . . . 4  |-  Rel  ( ~~> u `  S )
2 brrelex12 5155 . . . 4  |-  ( ( Rel  ( ~~> u `  S )  /\  F
( ~~> u `  S
) G )  -> 
( F  e.  _V  /\  G  e.  _V )
)
31, 2mpan 706 . . 3  |-  ( F ( ~~> u `  S
) G  ->  ( F  e.  _V  /\  G  e.  _V ) )
43a1i 11 . 2  |-  ( S  e.  V  ->  ( F ( ~~> u `  S ) G  -> 
( F  e.  _V  /\  G  e.  _V )
) )
5 3simpa 1058 . . . 4  |-  ( ( F : ( ZZ>= `  n ) --> ( CC 
^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  x
)  ->  ( F : ( ZZ>= `  n
) --> ( CC  ^m  S )  /\  G : S --> CC ) )
6 fvex 6201 . . . . . . 7  |-  ( ZZ>= `  n )  e.  _V
7 fex 6490 . . . . . . 7  |-  ( ( F : ( ZZ>= `  n ) --> ( CC 
^m  S )  /\  ( ZZ>= `  n )  e.  _V )  ->  F  e.  _V )
86, 7mpan2 707 . . . . . 6  |-  ( F : ( ZZ>= `  n
) --> ( CC  ^m  S )  ->  F  e.  _V )
98a1i 11 . . . . 5  |-  ( S  e.  V  ->  ( F : ( ZZ>= `  n
) --> ( CC  ^m  S )  ->  F  e.  _V ) )
10 fex 6490 . . . . . 6  |-  ( ( G : S --> CC  /\  S  e.  V )  ->  G  e.  _V )
1110expcom 451 . . . . 5  |-  ( S  e.  V  ->  ( G : S --> CC  ->  G  e.  _V ) )
129, 11anim12d 586 . . . 4  |-  ( S  e.  V  ->  (
( F : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  G : S --> CC )  ->  ( F  e.  _V  /\  G  e.  _V ) ) )
135, 12syl5 34 . . 3  |-  ( S  e.  V  ->  (
( F : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
)  ->  ( F  e.  _V  /\  G  e. 
_V ) ) )
1413rexlimdvw 3034 . 2  |-  ( S  e.  V  ->  ( E. n  e.  ZZ  ( F : ( ZZ>= `  n ) --> ( CC 
^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  x
)  ->  ( F  e.  _V  /\  G  e. 
_V ) ) )
15 elex 3212 . . . . . 6  |-  ( S  e.  V  ->  S  e.  _V )
16 simpr1 1067 . . . . . . . . . . . . 13  |-  ( ( S  e.  V  /\  ( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) )  ->  f : ( ZZ>= `  n
) --> ( CC  ^m  S ) )
17 uzssz 11707 . . . . . . . . . . . . 13  |-  ( ZZ>= `  n )  C_  ZZ
18 ovex 6678 . . . . . . . . . . . . . 14  |-  ( CC 
^m  S )  e. 
_V
19 zex 11386 . . . . . . . . . . . . . 14  |-  ZZ  e.  _V
20 elpm2r 7875 . . . . . . . . . . . . . 14  |-  ( ( ( ( CC  ^m  S )  e.  _V  /\  ZZ  e.  _V )  /\  ( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  ( ZZ>= `  n
)  C_  ZZ )
)  ->  f  e.  ( ( CC  ^m  S )  ^pm  ZZ ) )
2118, 19, 20mpanl12 718 . . . . . . . . . . . . 13  |-  ( ( f : ( ZZ>= `  n ) --> ( CC 
^m  S )  /\  ( ZZ>= `  n )  C_  ZZ )  ->  f  e.  ( ( CC  ^m  S )  ^pm  ZZ ) )
2216, 17, 21sylancl 694 . . . . . . . . . . . 12  |-  ( ( S  e.  V  /\  ( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) )  ->  f  e.  ( ( CC  ^m  S )  ^pm  ZZ ) )
23 simpr2 1068 . . . . . . . . . . . . 13  |-  ( ( S  e.  V  /\  ( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) )  ->  y : S --> CC )
24 cnex 10017 . . . . . . . . . . . . . 14  |-  CC  e.  _V
25 simpl 473 . . . . . . . . . . . . . 14  |-  ( ( S  e.  V  /\  ( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) )  ->  S  e.  V )
26 elmapg 7870 . . . . . . . . . . . . . 14  |-  ( ( CC  e.  _V  /\  S  e.  V )  ->  ( y  e.  ( CC  ^m  S )  <-> 
y : S --> CC ) )
2724, 25, 26sylancr 695 . . . . . . . . . . . . 13  |-  ( ( S  e.  V  /\  ( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) )  ->  (
y  e.  ( CC 
^m  S )  <->  y : S
--> CC ) )
2823, 27mpbird 247 . . . . . . . . . . . 12  |-  ( ( S  e.  V  /\  ( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) )  ->  y  e.  ( CC  ^m  S
) )
2922, 28jca 554 . . . . . . . . . . 11  |-  ( ( S  e.  V  /\  ( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) )  ->  (
f  e.  ( ( CC  ^m  S ) 
^pm  ZZ )  /\  y  e.  ( CC  ^m  S
) ) )
3029ex 450 . . . . . . . . . 10  |-  ( S  e.  V  ->  (
( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
)  ->  ( f  e.  ( ( CC  ^m  S )  ^pm  ZZ )  /\  y  e.  ( CC  ^m  S ) ) ) )
3130rexlimdvw 3034 . . . . . . . . 9  |-  ( S  e.  V  ->  ( E. n  e.  ZZ  ( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
)  ->  ( f  e.  ( ( CC  ^m  S )  ^pm  ZZ )  /\  y  e.  ( CC  ^m  S ) ) ) )
3231ssopab2dv 5004 . . . . . . . 8  |-  ( S  e.  V  ->  { <. f ,  y >.  |  E. n  e.  ZZ  (
f : ( ZZ>= `  n ) --> ( CC 
^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( f `  k ) `
 z )  -  ( y `  z
) ) )  < 
x ) }  C_  {
<. f ,  y >.  |  ( f  e.  ( ( CC  ^m  S )  ^pm  ZZ )  /\  y  e.  ( CC  ^m  S ) ) } )
33 df-xp 5120 . . . . . . . 8  |-  ( ( ( CC  ^m  S
)  ^pm  ZZ )  X.  ( CC  ^m  S
) )  =  { <. f ,  y >.  |  ( f  e.  ( ( CC  ^m  S )  ^pm  ZZ )  /\  y  e.  ( CC  ^m  S ) ) }
3432, 33syl6sseqr 3652 . . . . . . 7  |-  ( S  e.  V  ->  { <. f ,  y >.  |  E. n  e.  ZZ  (
f : ( ZZ>= `  n ) --> ( CC 
^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( f `  k ) `
 z )  -  ( y `  z
) ) )  < 
x ) }  C_  ( ( ( CC 
^m  S )  ^pm  ZZ )  X.  ( CC 
^m  S ) ) )
35 ovex 6678 . . . . . . . . 9  |-  ( ( CC  ^m  S ) 
^pm  ZZ )  e.  _V
3635, 18xpex 6962 . . . . . . . 8  |-  ( ( ( CC  ^m  S
)  ^pm  ZZ )  X.  ( CC  ^m  S
) )  e.  _V
3736ssex 4802 . . . . . . 7  |-  ( {
<. f ,  y >.  |  E. n  e.  ZZ  ( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) }  C_  (
( ( CC  ^m  S )  ^pm  ZZ )  X.  ( CC  ^m  S ) )  ->  { <. f ,  y
>.  |  E. n  e.  ZZ  ( f : ( ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) }  e.  _V )
3834, 37syl 17 . . . . . 6  |-  ( S  e.  V  ->  { <. f ,  y >.  |  E. n  e.  ZZ  (
f : ( ZZ>= `  n ) --> ( CC 
^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( f `  k ) `
 z )  -  ( y `  z
) ) )  < 
x ) }  e.  _V )
39 oveq2 6658 . . . . . . . . . . 11  |-  ( s  =  S  ->  ( CC  ^m  s )  =  ( CC  ^m  S
) )
4039feq3d 6032 . . . . . . . . . 10  |-  ( s  =  S  ->  (
f : ( ZZ>= `  n ) --> ( CC 
^m  s )  <->  f :
( ZZ>= `  n ) --> ( CC  ^m  S ) ) )
41 feq2 6027 . . . . . . . . . 10  |-  ( s  =  S  ->  (
y : s --> CC  <->  y : S --> CC ) )
42 raleq 3138 . . . . . . . . . . . 12  |-  ( s  =  S  ->  ( A. z  e.  s 
( abs `  (
( ( f `  k ) `  z
)  -  ( y `
 z ) ) )  <  x  <->  A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) )
4342rexralbidv 3058 . . . . . . . . . . 11  |-  ( s  =  S  ->  ( E. j  e.  ( ZZ>=
`  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  s  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x  <->  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `  k
) `  z )  -  ( y `  z ) ) )  <  x ) )
4443ralbidv 2986 . . . . . . . . . 10  |-  ( s  =  S  ->  ( A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  s  ( abs `  ( ( ( f `  k ) `
 z )  -  ( y `  z
) ) )  < 
x  <->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `  k
) `  z )  -  ( y `  z ) ) )  <  x ) )
4540, 41, 443anbi123d 1399 . . . . . . . . 9  |-  ( s  =  S  ->  (
( f : (
ZZ>= `  n ) --> ( CC  ^m  s )  /\  y : s --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  s  ( abs `  ( ( ( f `  k ) `
 z )  -  ( y `  z
) ) )  < 
x )  <->  ( f : ( ZZ>= `  n
) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( f `  k ) `
 z )  -  ( y `  z
) ) )  < 
x ) ) )
4645rexbidv 3052 . . . . . . . 8  |-  ( s  =  S  ->  ( E. n  e.  ZZ  ( f : (
ZZ>= `  n ) --> ( CC  ^m  s )  /\  y : s --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  s  ( abs `  ( ( ( f `  k ) `
 z )  -  ( y `  z
) ) )  < 
x )  <->  E. n  e.  ZZ  ( f : ( ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) ) )
4746opabbidv 4716 . . . . . . 7  |-  ( s  =  S  ->  { <. f ,  y >.  |  E. n  e.  ZZ  (
f : ( ZZ>= `  n ) --> ( CC 
^m  s )  /\  y : s --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  s  ( abs `  ( ( ( f `  k ) `
 z )  -  ( y `  z
) ) )  < 
x ) }  =  { <. f ,  y
>.  |  E. n  e.  ZZ  ( f : ( ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) } )
48 df-ulm 24131 . . . . . . 7  |-  ~~> u  =  ( s  e.  _V  |->  { <. f ,  y
>.  |  E. n  e.  ZZ  ( f : ( ZZ>= `  n ) --> ( CC  ^m  s
)  /\  y :
s --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  s  ( abs `  ( ( ( f `  k ) `
 z )  -  ( y `  z
) ) )  < 
x ) } )
4947, 48fvmptg 6280 . . . . . 6  |-  ( ( S  e.  _V  /\  {
<. f ,  y >.  |  E. n  e.  ZZ  ( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) }  e.  _V )  ->  ( ~~> u `  S )  =  { <. f ,  y >.  |  E. n  e.  ZZ  ( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) } )
5015, 38, 49syl2anc 693 . . . . 5  |-  ( S  e.  V  ->  ( ~~> u `  S )  =  { <. f ,  y
>.  |  E. n  e.  ZZ  ( f : ( ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) } )
5150breqd 4664 . . . 4  |-  ( S  e.  V  ->  ( F ( ~~> u `  S ) G  <->  F { <. f ,  y >.  |  E. n  e.  ZZ  ( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) } G ) )
52 simpl 473 . . . . . . . 8  |-  ( ( f  =  F  /\  y  =  G )  ->  f  =  F )
5352feq1d 6030 . . . . . . 7  |-  ( ( f  =  F  /\  y  =  G )  ->  ( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  <-> 
F : ( ZZ>= `  n ) --> ( CC 
^m  S ) ) )
54 simpr 477 . . . . . . . 8  |-  ( ( f  =  F  /\  y  =  G )  ->  y  =  G )
5554feq1d 6030 . . . . . . 7  |-  ( ( f  =  F  /\  y  =  G )  ->  ( y : S --> CC 
<->  G : S --> CC ) )
5652fveq1d 6193 . . . . . . . . . . . . . 14  |-  ( ( f  =  F  /\  y  =  G )  ->  ( f `  k
)  =  ( F `
 k ) )
5756fveq1d 6193 . . . . . . . . . . . . 13  |-  ( ( f  =  F  /\  y  =  G )  ->  ( ( f `  k ) `  z
)  =  ( ( F `  k ) `
 z ) )
5854fveq1d 6193 . . . . . . . . . . . . 13  |-  ( ( f  =  F  /\  y  =  G )  ->  ( y `  z
)  =  ( G `
 z ) )
5957, 58oveq12d 6668 . . . . . . . . . . . 12  |-  ( ( f  =  F  /\  y  =  G )  ->  ( ( ( f `
 k ) `  z )  -  (
y `  z )
)  =  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )
6059fveq2d 6195 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  y  =  G )  ->  ( abs `  (
( ( f `  k ) `  z
)  -  ( y `
 z ) ) )  =  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) )
6160breq1d 4663 . . . . . . . . . 10  |-  ( ( f  =  F  /\  y  =  G )  ->  ( ( abs `  (
( ( f `  k ) `  z
)  -  ( y `
 z ) ) )  <  x  <->  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
) )
6261ralbidv 2986 . . . . . . . . 9  |-  ( ( f  =  F  /\  y  =  G )  ->  ( A. z  e.  S  ( abs `  (
( ( f `  k ) `  z
)  -  ( y `
 z ) ) )  <  x  <->  A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
) )
6362rexralbidv 3058 . . . . . . . 8  |-  ( ( f  =  F  /\  y  =  G )  ->  ( E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( f `  k ) `
 z )  -  ( y `  z
) ) )  < 
x  <->  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
) )
6463ralbidv 2986 . . . . . . 7  |-  ( ( f  =  F  /\  y  =  G )  ->  ( A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x  <->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  x
) )
6553, 55, 643anbi123d 1399 . . . . . 6  |-  ( ( f  =  F  /\  y  =  G )  ->  ( ( f : ( ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
)  <->  ( F :
( ZZ>= `  n ) --> ( CC  ^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
) ) )
6665rexbidv 3052 . . . . 5  |-  ( ( f  =  F  /\  y  =  G )  ->  ( E. n  e.  ZZ  ( f : ( ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
)  <->  E. n  e.  ZZ  ( F : ( ZZ>= `  n ) --> ( CC 
^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  x
) ) )
67 eqid 2622 . . . . 5  |-  { <. f ,  y >.  |  E. n  e.  ZZ  (
f : ( ZZ>= `  n ) --> ( CC 
^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( f `  k ) `
 z )  -  ( y `  z
) ) )  < 
x ) }  =  { <. f ,  y
>.  |  E. n  e.  ZZ  ( f : ( ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) }
6866, 67brabga 4989 . . . 4  |-  ( ( F  e.  _V  /\  G  e.  _V )  ->  ( F { <. f ,  y >.  |  E. n  e.  ZZ  (
f : ( ZZ>= `  n ) --> ( CC 
^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( f `  k ) `
 z )  -  ( y `  z
) ) )  < 
x ) } G  <->  E. n  e.  ZZ  ( F : ( ZZ>= `  n
) --> ( CC  ^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  x
) ) )
6951, 68sylan9bb 736 . . 3  |-  ( ( S  e.  V  /\  ( F  e.  _V  /\  G  e.  _V )
)  ->  ( F
( ~~> u `  S
) G  <->  E. n  e.  ZZ  ( F :
( ZZ>= `  n ) --> ( CC  ^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
) ) )
7069ex 450 . 2  |-  ( S  e.  V  ->  (
( F  e.  _V  /\  G  e.  _V )  ->  ( F ( ~~> u `  S ) G  <->  E. n  e.  ZZ  ( F :
( ZZ>= `  n ) --> ( CC  ^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
) ) ) )
714, 14, 70pm5.21ndd 369 1  |-  ( S  e.  V  ->  ( F ( ~~> u `  S ) G  <->  E. n  e.  ZZ  ( F :
( ZZ>= `  n ) --> ( CC  ^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   class class class wbr 4653   {copab 4712    X. cxp 5112   Rel wrel 5119   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857    ^pm cpm 7858   CCcc 9934    < clt 10074    - cmin 10266   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   abscabs 13974   ~~> uculm 24130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-pm 7860  df-neg 10269  df-z 11378  df-uz 11688  df-ulm 24131
This theorem is referenced by:  ulmcl  24135  ulmf  24136  ulm2  24139
  Copyright terms: Public domain W3C validator