| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspn | Structured version Visualization version Unicode version | ||
| Description: The norm on a subspace is a restriction of the norm on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sspn.y |
|
| sspn.n |
|
| sspn.m |
|
| sspn.h |
|
| Ref | Expression |
|---|---|
| sspn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspn.h |
. . . . 5
| |
| 2 | 1 | sspnv 27581 |
. . . 4
|
| 3 | sspn.y |
. . . . 5
| |
| 4 | sspn.m |
. . . . 5
| |
| 5 | 3, 4 | nvf 27515 |
. . . 4
|
| 6 | 2, 5 | syl 17 |
. . 3
|
| 7 | ffn 6045 |
. . 3
| |
| 8 | 6, 7 | syl 17 |
. 2
|
| 9 | eqid 2622 |
. . . . . 6
| |
| 10 | sspn.n |
. . . . . 6
| |
| 11 | 9, 10 | nvf 27515 |
. . . . 5
|
| 12 | ffn 6045 |
. . . . 5
| |
| 13 | 11, 12 | syl 17 |
. . . 4
|
| 14 | 13 | adantr 481 |
. . 3
|
| 15 | 9, 3, 1 | sspba 27582 |
. . 3
|
| 16 | fnssres 6004 |
. . 3
| |
| 17 | 14, 15, 16 | syl2anc 693 |
. 2
|
| 18 | ffun 6048 |
. . . . . . 7
| |
| 19 | 11, 18 | syl 17 |
. . . . . 6
|
| 20 | funres 5929 |
. . . . . 6
| |
| 21 | 19, 20 | syl 17 |
. . . . 5
|
| 22 | 21 | ad2antrr 762 |
. . . 4
|
| 23 | fnresdm 6000 |
. . . . . . 7
| |
| 24 | 8, 23 | syl 17 |
. . . . . 6
|
| 25 | eqid 2622 |
. . . . . . . . . 10
| |
| 26 | eqid 2622 |
. . . . . . . . . 10
| |
| 27 | eqid 2622 |
. . . . . . . . . 10
| |
| 28 | eqid 2622 |
. . . . . . . . . 10
| |
| 29 | 25, 26, 27, 28, 10, 4, 1 | isssp 27579 |
. . . . . . . . 9
|
| 30 | 29 | simplbda 654 |
. . . . . . . 8
|
| 31 | 30 | simp3d 1075 |
. . . . . . 7
|
| 32 | ssres 5424 |
. . . . . . 7
| |
| 33 | 31, 32 | syl 17 |
. . . . . 6
|
| 34 | 24, 33 | eqsstr3d 3640 |
. . . . 5
|
| 35 | 34 | adantr 481 |
. . . 4
|
| 36 | fdm 6051 |
. . . . . . . 8
| |
| 37 | 5, 36 | syl 17 |
. . . . . . 7
|
| 38 | 37 | eleq2d 2687 |
. . . . . 6
|
| 39 | 38 | biimpar 502 |
. . . . 5
|
| 40 | 2, 39 | sylan 488 |
. . . 4
|
| 41 | funssfv 6209 |
. . . 4
| |
| 42 | 22, 35, 40, 41 | syl3anc 1326 |
. . 3
|
| 43 | 42 | eqcomd 2628 |
. 2
|
| 44 | 8, 17, 43 | eqfnfvd 6314 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-1st 7168 df-2nd 7169 df-vc 27414 df-nv 27447 df-va 27450 df-ba 27451 df-sm 27452 df-0v 27453 df-nmcv 27455 df-ssp 27577 |
| This theorem is referenced by: sspnval 27592 |
| Copyright terms: Public domain | W3C validator |