MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspn Structured version   Visualization version   Unicode version

Theorem sspn 27591
Description: The norm on a subspace is a restriction of the norm on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspn.y  |-  Y  =  ( BaseSet `  W )
sspn.n  |-  N  =  ( normCV `  U )
sspn.m  |-  M  =  ( normCV `  W )
sspn.h  |-  H  =  ( SubSp `  U )
Assertion
Ref Expression
sspn  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  M  =  ( N  |`  Y ) )

Proof of Theorem sspn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sspn.h . . . . 5  |-  H  =  ( SubSp `  U )
21sspnv 27581 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  W  e.  NrmCVec )
3 sspn.y . . . . 5  |-  Y  =  ( BaseSet `  W )
4 sspn.m . . . . 5  |-  M  =  ( normCV `  W )
53, 4nvf 27515 . . . 4  |-  ( W  e.  NrmCVec  ->  M : Y --> RR )
62, 5syl 17 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  M : Y --> RR )
7 ffn 6045 . . 3  |-  ( M : Y --> RR  ->  M  Fn  Y )
86, 7syl 17 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  M  Fn  Y )
9 eqid 2622 . . . . . 6  |-  ( BaseSet `  U )  =  (
BaseSet `  U )
10 sspn.n . . . . . 6  |-  N  =  ( normCV `  U )
119, 10nvf 27515 . . . . 5  |-  ( U  e.  NrmCVec  ->  N : (
BaseSet `  U ) --> RR )
12 ffn 6045 . . . . 5  |-  ( N : ( BaseSet `  U
) --> RR  ->  N  Fn  ( BaseSet `  U )
)
1311, 12syl 17 . . . 4  |-  ( U  e.  NrmCVec  ->  N  Fn  ( BaseSet
`  U ) )
1413adantr 481 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  N  Fn  ( BaseSet `  U )
)
159, 3, 1sspba 27582 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  Y  C_  ( BaseSet `  U )
)
16 fnssres 6004 . . 3  |-  ( ( N  Fn  ( BaseSet `  U )  /\  Y  C_  ( BaseSet `  U )
)  ->  ( N  |`  Y )  Fn  Y
)
1714, 15, 16syl2anc 693 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( N  |`  Y )  Fn  Y )
18 ffun 6048 . . . . . . 7  |-  ( N : ( BaseSet `  U
) --> RR  ->  Fun  N )
1911, 18syl 17 . . . . . 6  |-  ( U  e.  NrmCVec  ->  Fun  N )
20 funres 5929 . . . . . 6  |-  ( Fun 
N  ->  Fun  ( N  |`  Y ) )
2119, 20syl 17 . . . . 5  |-  ( U  e.  NrmCVec  ->  Fun  ( N  |`  Y ) )
2221ad2antrr 762 . . . 4  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  x  e.  Y
)  ->  Fun  ( N  |`  Y ) )
23 fnresdm 6000 . . . . . . 7  |-  ( M  Fn  Y  ->  ( M  |`  Y )  =  M )
248, 23syl 17 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( M  |`  Y )  =  M )
25 eqid 2622 . . . . . . . . . 10  |-  ( +v
`  U )  =  ( +v `  U
)
26 eqid 2622 . . . . . . . . . 10  |-  ( +v
`  W )  =  ( +v `  W
)
27 eqid 2622 . . . . . . . . . 10  |-  ( .sOLD `  U )  =  ( .sOLD `  U )
28 eqid 2622 . . . . . . . . . 10  |-  ( .sOLD `  W )  =  ( .sOLD `  W )
2925, 26, 27, 28, 10, 4, 1isssp 27579 . . . . . . . . 9  |-  ( U  e.  NrmCVec  ->  ( W  e.  H  <->  ( W  e.  NrmCVec 
/\  ( ( +v
`  W )  C_  ( +v `  U )  /\  ( .sOLD `  W )  C_  ( .sOLD `  U )  /\  M  C_  N
) ) ) )
3029simplbda 654 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  (
( +v `  W
)  C_  ( +v `  U )  /\  ( .sOLD `  W ) 
C_  ( .sOLD `  U )  /\  M  C_  N ) )
3130simp3d 1075 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  M  C_  N )
32 ssres 5424 . . . . . . 7  |-  ( M 
C_  N  ->  ( M  |`  Y )  C_  ( N  |`  Y ) )
3331, 32syl 17 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( M  |`  Y )  C_  ( N  |`  Y ) )
3424, 33eqsstr3d 3640 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  M  C_  ( N  |`  Y ) )
3534adantr 481 . . . 4  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  x  e.  Y
)  ->  M  C_  ( N  |`  Y ) )
36 fdm 6051 . . . . . . . 8  |-  ( M : Y --> RR  ->  dom 
M  =  Y )
375, 36syl 17 . . . . . . 7  |-  ( W  e.  NrmCVec  ->  dom  M  =  Y )
3837eleq2d 2687 . . . . . 6  |-  ( W  e.  NrmCVec  ->  ( x  e. 
dom  M  <->  x  e.  Y
) )
3938biimpar 502 . . . . 5  |-  ( ( W  e.  NrmCVec  /\  x  e.  Y )  ->  x  e.  dom  M )
402, 39sylan 488 . . . 4  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  x  e.  Y
)  ->  x  e.  dom  M )
41 funssfv 6209 . . . 4  |-  ( ( Fun  ( N  |`  Y )  /\  M  C_  ( N  |`  Y )  /\  x  e.  dom  M )  ->  ( ( N  |`  Y ) `  x )  =  ( M `  x ) )
4222, 35, 40, 41syl3anc 1326 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  x  e.  Y
)  ->  ( ( N  |`  Y ) `  x )  =  ( M `  x ) )
4342eqcomd 2628 . 2  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  x  e.  Y
)  ->  ( M `  x )  =  ( ( N  |`  Y ) `
 x ) )
448, 17, 43eqfnfvd 6314 1  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  M  =  ( N  |`  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   dom cdm 5114    |` cres 5116   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888   RRcr 9935   NrmCVeccnv 27439   +vcpv 27440   BaseSetcba 27441   .sOLDcns 27442   normCVcnmcv 27445   SubSpcss 27576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-1st 7168  df-2nd 7169  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-nmcv 27455  df-ssp 27577
This theorem is referenced by:  sspnval  27592
  Copyright terms: Public domain W3C validator