| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem15 | Structured version Visualization version Unicode version | ||
| Description: This lemma is used to
prove the existence of a function |
| Ref | Expression |
|---|---|
| stoweidlem15.1 |
|
| stoweidlem15.3 |
|
| stoweidlem15.4 |
|
| Ref | Expression |
|---|---|
| stoweidlem15 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 473 |
. . . 4
| |
| 2 | stoweidlem15.3 |
. . . . . 6
| |
| 3 | 2 | ffvelrnda 6359 |
. . . . 5
|
| 4 | elrabi 3359 |
. . . . . 6
| |
| 5 | stoweidlem15.1 |
. . . . . 6
| |
| 6 | 4, 5 | eleq2s 2719 |
. . . . 5
|
| 7 | 3, 6 | syl 17 |
. . . 4
|
| 8 | eleq1 2689 |
. . . . . . . 8
| |
| 9 | 8 | anbi2d 740 |
. . . . . . 7
|
| 10 | feq1 6026 |
. . . . . . 7
| |
| 11 | 9, 10 | imbi12d 334 |
. . . . . 6
|
| 12 | stoweidlem15.4 |
. . . . . 6
| |
| 13 | 11, 12 | vtoclg 3266 |
. . . . 5
|
| 14 | 7, 13 | syl 17 |
. . . 4
|
| 15 | 1, 7, 14 | mp2and 715 |
. . 3
|
| 16 | 15 | ffvelrnda 6359 |
. 2
|
| 17 | 3, 5 | syl6eleq 2711 |
. . . . . . 7
|
| 18 | fveq1 6190 |
. . . . . . . . . 10
| |
| 19 | 18 | eqeq1d 2624 |
. . . . . . . . 9
|
| 20 | fveq1 6190 |
. . . . . . . . . . . 12
| |
| 21 | 20 | breq2d 4665 |
. . . . . . . . . . 11
|
| 22 | 20 | breq1d 4663 |
. . . . . . . . . . 11
|
| 23 | 21, 22 | anbi12d 747 |
. . . . . . . . . 10
|
| 24 | 23 | ralbidv 2986 |
. . . . . . . . 9
|
| 25 | 19, 24 | anbi12d 747 |
. . . . . . . 8
|
| 26 | 25 | elrab 3363 |
. . . . . . 7
|
| 27 | 17, 26 | sylib 208 |
. . . . . 6
|
| 28 | 27 | simprd 479 |
. . . . 5
|
| 29 | 28 | simprd 479 |
. . . 4
|
| 30 | fveq2 6191 |
. . . . . . . 8
| |
| 31 | 30 | breq2d 4665 |
. . . . . . 7
|
| 32 | 30 | breq1d 4663 |
. . . . . . 7
|
| 33 | 31, 32 | anbi12d 747 |
. . . . . 6
|
| 34 | 33 | cbvralv 3171 |
. . . . 5
|
| 35 | fveq2 6191 |
. . . . . . . 8
| |
| 36 | 35 | breq2d 4665 |
. . . . . . 7
|
| 37 | 35 | breq1d 4663 |
. . . . . . 7
|
| 38 | 36, 37 | anbi12d 747 |
. . . . . 6
|
| 39 | 38 | rspccva 3308 |
. . . . 5
|
| 40 | 34, 39 | sylanbr 490 |
. . . 4
|
| 41 | 29, 40 | sylan 488 |
. . 3
|
| 42 | 41 | simpld 475 |
. 2
|
| 43 | 41 | simprd 479 |
. 2
|
| 44 | 16, 42, 43 | 3jca 1242 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 |
| This theorem is referenced by: stoweidlem30 40247 stoweidlem38 40255 stoweidlem44 40261 |
| Copyright terms: Public domain | W3C validator |