Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem2 Structured version   Visualization version   Unicode version

Theorem stoweidlem2 40219
Description: lemma for stoweid 40280: here we prove that the subalgebra of continuous functions, which contains constant functions, is closed under scaling. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem2.1  |-  F/ t
ph
stoweidlem2.2  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem2.3  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem2.4  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
stoweidlem2.5  |-  ( ph  ->  E  e.  RR )
stoweidlem2.6  |-  ( ph  ->  F  e.  A )
Assertion
Ref Expression
stoweidlem2  |-  ( ph  ->  ( t  e.  T  |->  ( E  x.  ( F `  t )
) )  e.  A
)
Distinct variable groups:    f, g,
t, F    f, E, t    A, f, g    T, f, g, t    ph, f,
g    x, t, E    x, A    x, T    ph, x
Allowed substitution hints:    ph( t)    A( t)    E( g)    F( x)

Proof of Theorem stoweidlem2
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 stoweidlem2.1 . . 3  |-  F/ t
ph
2 simpr 477 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  t  e.  T )
3 stoweidlem2.5 . . . . . . 7  |-  ( ph  ->  E  e.  RR )
43adantr 481 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  E  e.  RR )
5 eqidd 2623 . . . . . . . 8  |-  ( s  =  t  ->  E  =  E )
65cbvmptv 4750 . . . . . . 7  |-  ( s  e.  T  |->  E )  =  ( t  e.  T  |->  E )
76fvmpt2 6291 . . . . . 6  |-  ( ( t  e.  T  /\  E  e.  RR )  ->  ( ( s  e.  T  |->  E ) `  t )  =  E )
82, 4, 7syl2anc 693 . . . . 5  |-  ( (
ph  /\  t  e.  T )  ->  (
( s  e.  T  |->  E ) `  t
)  =  E )
98eqcomd 2628 . . . 4  |-  ( (
ph  /\  t  e.  T )  ->  E  =  ( ( s  e.  T  |->  E ) `
 t ) )
109oveq1d 6665 . . 3  |-  ( (
ph  /\  t  e.  T )  ->  ( E  x.  ( F `  t ) )  =  ( ( ( s  e.  T  |->  E ) `
 t )  x.  ( F `  t
) ) )
111, 10mpteq2da 4743 . 2  |-  ( ph  ->  ( t  e.  T  |->  ( E  x.  ( F `  t )
) )  =  ( t  e.  T  |->  ( ( ( s  e.  T  |->  E ) `  t )  x.  ( F `  t )
) ) )
12 id 22 . . . . . . . . 9  |-  ( x  =  E  ->  x  =  E )
1312mpteq2dv 4745 . . . . . . . 8  |-  ( x  =  E  ->  (
t  e.  T  |->  x )  =  ( t  e.  T  |->  E ) )
1413eleq1d 2686 . . . . . . 7  |-  ( x  =  E  ->  (
( t  e.  T  |->  x )  e.  A  <->  ( t  e.  T  |->  E )  e.  A ) )
1514imbi2d 330 . . . . . 6  |-  ( x  =  E  ->  (
( ph  ->  ( t  e.  T  |->  x )  e.  A )  <->  ( ph  ->  ( t  e.  T  |->  E )  e.  A
) ) )
16 stoweidlem2.3 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
1716expcom 451 . . . . . 6  |-  ( x  e.  RR  ->  ( ph  ->  ( t  e.  T  |->  x )  e.  A ) )
1815, 17vtoclga 3272 . . . . 5  |-  ( E  e.  RR  ->  ( ph  ->  ( t  e.  T  |->  E )  e.  A ) )
193, 18mpcom 38 . . . 4  |-  ( ph  ->  ( t  e.  T  |->  E )  e.  A
)
206, 19syl5eqel 2705 . . 3  |-  ( ph  ->  ( s  e.  T  |->  E )  e.  A
)
21 fveq1 6190 . . . . . . . 8  |-  ( f  =  ( s  e.  T  |->  E )  -> 
( f `  t
)  =  ( ( s  e.  T  |->  E ) `  t ) )
2221oveq1d 6665 . . . . . . 7  |-  ( f  =  ( s  e.  T  |->  E )  -> 
( ( f `  t )  x.  ( F `  t )
)  =  ( ( ( s  e.  T  |->  E ) `  t
)  x.  ( F `
 t ) ) )
2322mpteq2dv 4745 . . . . . 6  |-  ( f  =  ( s  e.  T  |->  E )  -> 
( t  e.  T  |->  ( ( f `  t )  x.  ( F `  t )
) )  =  ( t  e.  T  |->  ( ( ( s  e.  T  |->  E ) `  t )  x.  ( F `  t )
) ) )
2423eleq1d 2686 . . . . 5  |-  ( f  =  ( s  e.  T  |->  E )  -> 
( ( t  e.  T  |->  ( ( f `
 t )  x.  ( F `  t
) ) )  e.  A  <->  ( t  e.  T  |->  ( ( ( s  e.  T  |->  E ) `  t )  x.  ( F `  t ) ) )  e.  A ) )
2524imbi2d 330 . . . 4  |-  ( f  =  ( s  e.  T  |->  E )  -> 
( ( ph  ->  ( t  e.  T  |->  ( ( f `  t
)  x.  ( F `
 t ) ) )  e.  A )  <-> 
( ph  ->  ( t  e.  T  |->  ( ( ( s  e.  T  |->  E ) `  t
)  x.  ( F `
 t ) ) )  e.  A ) ) )
26 stoweidlem2.6 . . . . . . 7  |-  ( ph  ->  F  e.  A )
2726adantr 481 . . . . . 6  |-  ( (
ph  /\  f  e.  A )  ->  F  e.  A )
28 fveq1 6190 . . . . . . . . . . 11  |-  ( g  =  F  ->  (
g `  t )  =  ( F `  t ) )
2928oveq2d 6666 . . . . . . . . . 10  |-  ( g  =  F  ->  (
( f `  t
)  x.  ( g `
 t ) )  =  ( ( f `
 t )  x.  ( F `  t
) ) )
3029mpteq2dv 4745 . . . . . . . . 9  |-  ( g  =  F  ->  (
t  e.  T  |->  ( ( f `  t
)  x.  ( g `
 t ) ) )  =  ( t  e.  T  |->  ( ( f `  t )  x.  ( F `  t ) ) ) )
3130eleq1d 2686 . . . . . . . 8  |-  ( g  =  F  ->  (
( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  e.  A  <->  ( t  e.  T  |->  ( ( f `  t
)  x.  ( F `
 t ) ) )  e.  A ) )
3231imbi2d 330 . . . . . . 7  |-  ( g  =  F  ->  (
( ( ph  /\  f  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  e.  A
)  <->  ( ( ph  /\  f  e.  A )  ->  ( t  e.  T  |->  ( ( f `
 t )  x.  ( F `  t
) ) )  e.  A ) ) )
33 stoweidlem2.2 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
34333comr 1273 . . . . . . . 8  |-  ( ( g  e.  A  /\  ph 
/\  f  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
35343expib 1268 . . . . . . 7  |-  ( g  e.  A  ->  (
( ph  /\  f  e.  A )  ->  (
t  e.  T  |->  ( ( f `  t
)  x.  ( g `
 t ) ) )  e.  A ) )
3632, 35vtoclga 3272 . . . . . 6  |-  ( F  e.  A  ->  (
( ph  /\  f  e.  A )  ->  (
t  e.  T  |->  ( ( f `  t
)  x.  ( F `
 t ) ) )  e.  A ) )
3727, 36mpcom 38 . . . . 5  |-  ( (
ph  /\  f  e.  A )  ->  (
t  e.  T  |->  ( ( f `  t
)  x.  ( F `
 t ) ) )  e.  A )
3837expcom 451 . . . 4  |-  ( f  e.  A  ->  ( ph  ->  ( t  e.  T  |->  ( ( f `
 t )  x.  ( F `  t
) ) )  e.  A ) )
3925, 38vtoclga 3272 . . 3  |-  ( ( s  e.  T  |->  E )  e.  A  -> 
( ph  ->  ( t  e.  T  |->  ( ( ( s  e.  T  |->  E ) `  t
)  x.  ( F `
 t ) ) )  e.  A ) )
4020, 39mpcom 38 . 2  |-  ( ph  ->  ( t  e.  T  |->  ( ( ( s  e.  T  |->  E ) `
 t )  x.  ( F `  t
) ) )  e.  A )
4111, 40eqeltrd 2701 1  |-  ( ph  ->  ( t  e.  T  |->  ( E  x.  ( F `  t )
) )  e.  A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   F/wnf 1708    e. wcel 1990    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935    x. cmul 9941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653
This theorem is referenced by:  stoweidlem17  40234
  Copyright terms: Public domain W3C validator