MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgreldmiedg Structured version   Visualization version   Unicode version

Theorem subgreldmiedg 26175
Description: An element of the domain of the edge function of a subgraph is an element of the domain of the edge function of the supergraph. (Contributed by AV, 20-Nov-2020.)
Assertion
Ref Expression
subgreldmiedg  |-  ( ( S SubGraph  G  /\  X  e. 
dom  (iEdg `  S )
)  ->  X  e.  dom  (iEdg `  G )
)

Proof of Theorem subgreldmiedg
StepHypRef Expression
1 eqid 2622 . . . 4  |-  (Vtx `  S )  =  (Vtx
`  S )
2 eqid 2622 . . . 4  |-  (Vtx `  G )  =  (Vtx
`  G )
3 eqid 2622 . . . 4  |-  (iEdg `  S )  =  (iEdg `  S )
4 eqid 2622 . . . 4  |-  (iEdg `  G )  =  (iEdg `  G )
5 eqid 2622 . . . 4  |-  (Edg `  S )  =  (Edg
`  S )
61, 2, 3, 4, 5subgrprop2 26166 . . 3  |-  ( S SubGraph  G  ->  ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) ) )
7 dmss 5323 . . . . 5  |-  ( (iEdg `  S )  C_  (iEdg `  G )  ->  dom  (iEdg `  S )  C_  dom  (iEdg `  G )
)
873ad2ant2 1083 . . . 4  |-  ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_ 
~P (Vtx `  S
) )  ->  dom  (iEdg `  S )  C_  dom  (iEdg `  G )
)
98sseld 3602 . . 3  |-  ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_ 
~P (Vtx `  S
) )  ->  ( X  e.  dom  (iEdg `  S )  ->  X  e.  dom  (iEdg `  G
) ) )
106, 9syl 17 . 2  |-  ( S SubGraph  G  ->  ( X  e. 
dom  (iEdg `  S )  ->  X  e.  dom  (iEdg `  G ) ) )
1110imp 445 1  |-  ( ( S SubGraph  G  /\  X  e. 
dom  (iEdg `  S )
)  ->  X  e.  dom  (iEdg `  G )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    e. wcel 1990    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653   dom cdm 5114   ` cfv 5888  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   SubGraph csubgr 26159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-dm 5124  df-res 5126  df-iota 5851  df-fv 5896  df-subgr 26160
This theorem is referenced by:  subgruhgredgd  26176  subumgredg2  26177  subupgr  26179
  Copyright terms: Public domain W3C validator