MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subupgr Structured version   Visualization version   Unicode version

Theorem subupgr 26179
Description: A subgraph of a pseudograph is a pseudograph. (Contributed by AV, 16-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.)
Assertion
Ref Expression
subupgr  |-  ( ( G  e. UPGraph  /\  S SubGraph  G )  ->  S  e. UPGraph  )

Proof of Theorem subupgr
Dummy variables  x  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . 4  |-  (Vtx `  S )  =  (Vtx
`  S )
2 eqid 2622 . . . 4  |-  (Vtx `  G )  =  (Vtx
`  G )
3 eqid 2622 . . . 4  |-  (iEdg `  S )  =  (iEdg `  S )
4 eqid 2622 . . . 4  |-  (iEdg `  G )  =  (iEdg `  G )
5 eqid 2622 . . . 4  |-  (Edg `  S )  =  (Edg
`  S )
61, 2, 3, 4, 5subgrprop2 26166 . . 3  |-  ( S SubGraph  G  ->  ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) ) )
7 upgruhgr 25997 . . . . . . . . . 10  |-  ( G  e. UPGraph  ->  G  e. UHGraph  )
8 subgruhgrfun 26174 . . . . . . . . . 10  |-  ( ( G  e. UHGraph  /\  S SubGraph  G )  ->  Fun  (iEdg `  S
) )
97, 8sylan 488 . . . . . . . . 9  |-  ( ( G  e. UPGraph  /\  S SubGraph  G )  ->  Fun  (iEdg `  S
) )
109ancoms 469 . . . . . . . 8  |-  ( ( S SubGraph  G  /\  G  e. UPGraph  )  ->  Fun  (iEdg `  S
) )
11 funfn 5918 . . . . . . . 8  |-  ( Fun  (iEdg `  S )  <->  (iEdg `  S )  Fn  dom  (iEdg `  S ) )
1210, 11sylib 208 . . . . . . 7  |-  ( ( S SubGraph  G  /\  G  e. UPGraph  )  ->  (iEdg `  S
)  Fn  dom  (iEdg `  S ) )
1312adantl 482 . . . . . 6  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UPGraph  ) )  ->  (iEdg `  S )  Fn  dom  (iEdg `  S ) )
147anim2i 593 . . . . . . . . . . . . . 14  |-  ( ( S SubGraph  G  /\  G  e. UPGraph  )  ->  ( S SubGraph  G  /\  G  e. UHGraph  ) )
1514adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UPGraph  ) )  ->  ( S SubGraph  G  /\  G  e. UHGraph  ) )
1615ancomd 467 . . . . . . . . . . . 12  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UPGraph  ) )  ->  ( G  e. UHGraph  /\  S SubGraph  G ) )
1716anim1i 592 . . . . . . . . . . 11  |-  ( ( ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UPGraph  ) )  /\  x  e.  dom  (iEdg `  S ) )  -> 
( ( G  e. UHGraph  /\  S SubGraph  G )  /\  x  e.  dom  (iEdg `  S ) ) )
1817simplld 791 . . . . . . . . . 10  |-  ( ( ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UPGraph  ) )  /\  x  e.  dom  (iEdg `  S ) )  ->  G  e. UHGraph  )
19 simpl 473 . . . . . . . . . . . 12  |-  ( ( S SubGraph  G  /\  G  e. UPGraph  )  ->  S SubGraph  G )
2019adantl 482 . . . . . . . . . . 11  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UPGraph  ) )  ->  S SubGraph  G )
2120adantr 481 . . . . . . . . . 10  |-  ( ( ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UPGraph  ) )  /\  x  e.  dom  (iEdg `  S ) )  ->  S SubGraph  G )
22 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UPGraph  ) )  /\  x  e.  dom  (iEdg `  S ) )  ->  x  e.  dom  (iEdg `  S ) )
231, 3, 18, 21, 22subgruhgredgd 26176 . . . . . . . . 9  |-  ( ( ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UPGraph  ) )  /\  x  e.  dom  (iEdg `  S ) )  -> 
( (iEdg `  S
) `  x )  e.  ( ~P (Vtx `  S )  \  { (/)
} ) )
244uhgrfun 25961 . . . . . . . . . . . . . . . 16  |-  ( G  e. UHGraph  ->  Fun  (iEdg `  G
) )
257, 24syl 17 . . . . . . . . . . . . . . 15  |-  ( G  e. UPGraph  ->  Fun  (iEdg `  G
) )
2625ad2antll 765 . . . . . . . . . . . . . 14  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UPGraph  ) )  ->  Fun  (iEdg `  G ) )
2726adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UPGraph  ) )  /\  x  e.  dom  (iEdg `  S ) )  ->  Fun  (iEdg `  G )
)
28 simpll2 1101 . . . . . . . . . . . . 13  |-  ( ( ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UPGraph  ) )  /\  x  e.  dom  (iEdg `  S ) )  -> 
(iEdg `  S )  C_  (iEdg `  G )
)
29 funssfv 6209 . . . . . . . . . . . . 13  |-  ( ( Fun  (iEdg `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  x  e.  dom  (iEdg `  S )
)  ->  ( (iEdg `  G ) `  x
)  =  ( (iEdg `  S ) `  x
) )
3027, 28, 22, 29syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UPGraph  ) )  /\  x  e.  dom  (iEdg `  S ) )  -> 
( (iEdg `  G
) `  x )  =  ( (iEdg `  S ) `  x
) )
3130eqcomd 2628 . . . . . . . . . . 11  |-  ( ( ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UPGraph  ) )  /\  x  e.  dom  (iEdg `  S ) )  -> 
( (iEdg `  S
) `  x )  =  ( (iEdg `  G ) `  x
) )
3231fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UPGraph  ) )  /\  x  e.  dom  (iEdg `  S ) )  -> 
( # `  ( (iEdg `  S ) `  x
) )  =  (
# `  ( (iEdg `  G ) `  x
) ) )
33 subgreldmiedg 26175 . . . . . . . . . . . . . . 15  |-  ( ( S SubGraph  G  /\  x  e.  dom  (iEdg `  S
) )  ->  x  e.  dom  (iEdg `  G
) )
3433ex 450 . . . . . . . . . . . . . 14  |-  ( S SubGraph  G  ->  ( x  e. 
dom  (iEdg `  S )  ->  x  e.  dom  (iEdg `  G ) ) )
3534adantr 481 . . . . . . . . . . . . 13  |-  ( ( S SubGraph  G  /\  G  e. UPGraph  )  ->  ( x  e. 
dom  (iEdg `  S )  ->  x  e.  dom  (iEdg `  G ) ) )
3635adantl 482 . . . . . . . . . . . 12  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UPGraph  ) )  ->  (
x  e.  dom  (iEdg `  S )  ->  x  e.  dom  (iEdg `  G
) ) )
37 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  dom  (iEdg `  G )  /\  G  e. UPGraph  )  ->  G  e. UPGraph  )
38 funfn 5918 . . . . . . . . . . . . . . . . 17  |-  ( Fun  (iEdg `  G )  <->  (iEdg `  G )  Fn  dom  (iEdg `  G ) )
3925, 38sylib 208 . . . . . . . . . . . . . . . 16  |-  ( G  e. UPGraph  ->  (iEdg `  G
)  Fn  dom  (iEdg `  G ) )
4039adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  dom  (iEdg `  G )  /\  G  e. UPGraph  )  ->  (iEdg `  G
)  Fn  dom  (iEdg `  G ) )
41 simpl 473 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  dom  (iEdg `  G )  /\  G  e. UPGraph  )  ->  x  e.  dom  (iEdg `  G )
)
422, 4upgrle 25985 . . . . . . . . . . . . . . 15  |-  ( ( G  e. UPGraph  /\  (iEdg `  G )  Fn  dom  (iEdg `  G )  /\  x  e.  dom  (iEdg `  G ) )  -> 
( # `  ( (iEdg `  G ) `  x
) )  <_  2
)
4337, 40, 41, 42syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( x  e.  dom  (iEdg `  G )  /\  G  e. UPGraph  )  ->  ( # `  (
(iEdg `  G ) `  x ) )  <_ 
2 )
4443expcom 451 . . . . . . . . . . . . 13  |-  ( G  e. UPGraph  ->  ( x  e. 
dom  (iEdg `  G )  ->  ( # `  (
(iEdg `  G ) `  x ) )  <_ 
2 ) )
4544ad2antll 765 . . . . . . . . . . . 12  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UPGraph  ) )  ->  (
x  e.  dom  (iEdg `  G )  ->  ( # `
 ( (iEdg `  G ) `  x
) )  <_  2
) )
4636, 45syld 47 . . . . . . . . . . 11  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UPGraph  ) )  ->  (
x  e.  dom  (iEdg `  S )  ->  ( # `
 ( (iEdg `  G ) `  x
) )  <_  2
) )
4746imp 445 . . . . . . . . . 10  |-  ( ( ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UPGraph  ) )  /\  x  e.  dom  (iEdg `  S ) )  -> 
( # `  ( (iEdg `  G ) `  x
) )  <_  2
)
4832, 47eqbrtrd 4675 . . . . . . . . 9  |-  ( ( ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UPGraph  ) )  /\  x  e.  dom  (iEdg `  S ) )  -> 
( # `  ( (iEdg `  S ) `  x
) )  <_  2
)
49 fveq2 6191 . . . . . . . . . . 11  |-  ( e  =  ( (iEdg `  S ) `  x
)  ->  ( # `  e
)  =  ( # `  ( (iEdg `  S
) `  x )
) )
5049breq1d 4663 . . . . . . . . . 10  |-  ( e  =  ( (iEdg `  S ) `  x
)  ->  ( ( # `
 e )  <_ 
2  <->  ( # `  (
(iEdg `  S ) `  x ) )  <_ 
2 ) )
5150elrab 3363 . . . . . . . . 9  |-  ( ( (iEdg `  S ) `  x )  e.  {
e  e.  ( ~P (Vtx `  S )  \  { (/) } )  |  ( # `  e
)  <_  2 }  <->  ( ( (iEdg `  S
) `  x )  e.  ( ~P (Vtx `  S )  \  { (/)
} )  /\  ( # `
 ( (iEdg `  S ) `  x
) )  <_  2
) )
5223, 48, 51sylanbrc 698 . . . . . . . 8  |-  ( ( ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UPGraph  ) )  /\  x  e.  dom  (iEdg `  S ) )  -> 
( (iEdg `  S
) `  x )  e.  { e  e.  ( ~P (Vtx `  S
)  \  { (/) } )  |  ( # `  e
)  <_  2 }
)
5352ralrimiva 2966 . . . . . . 7  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UPGraph  ) )  ->  A. x  e.  dom  (iEdg `  S
) ( (iEdg `  S ) `  x
)  e.  { e  e.  ( ~P (Vtx `  S )  \  { (/)
} )  |  (
# `  e )  <_  2 } )
54 fnfvrnss 6390 . . . . . . 7  |-  ( ( (iEdg `  S )  Fn  dom  (iEdg `  S
)  /\  A. x  e.  dom  (iEdg `  S
) ( (iEdg `  S ) `  x
)  e.  { e  e.  ( ~P (Vtx `  S )  \  { (/)
} )  |  (
# `  e )  <_  2 } )  ->  ran  (iEdg `  S )  C_ 
{ e  e.  ( ~P (Vtx `  S
)  \  { (/) } )  |  ( # `  e
)  <_  2 }
)
5513, 53, 54syl2anc 693 . . . . . 6  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UPGraph  ) )  ->  ran  (iEdg `  S )  C_  { e  e.  ( ~P (Vtx `  S )  \  { (/) } )  |  ( # `  e
)  <_  2 }
)
56 df-f 5892 . . . . . 6  |-  ( (iEdg `  S ) : dom  (iEdg `  S ) --> { e  e.  ( ~P (Vtx `  S )  \  { (/) } )  |  ( # `  e
)  <_  2 }  <->  ( (iEdg `  S )  Fn  dom  (iEdg `  S
)  /\  ran  (iEdg `  S )  C_  { e  e.  ( ~P (Vtx `  S )  \  { (/)
} )  |  (
# `  e )  <_  2 } ) )
5713, 55, 56sylanbrc 698 . . . . 5  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UPGraph  ) )  ->  (iEdg `  S ) : dom  (iEdg `  S ) --> { e  e.  ( ~P (Vtx `  S )  \  { (/) } )  |  ( # `  e
)  <_  2 }
)
58 subgrv 26162 . . . . . . . 8  |-  ( S SubGraph  G  ->  ( S  e. 
_V  /\  G  e.  _V ) )
591, 3isupgr 25979 . . . . . . . . 9  |-  ( S  e.  _V  ->  ( S  e. UPGraph  <->  (iEdg `  S ) : dom  (iEdg `  S
) --> { e  e.  ( ~P (Vtx `  S )  \  { (/)
} )  |  (
# `  e )  <_  2 } ) )
6059adantr 481 . . . . . . . 8  |-  ( ( S  e.  _V  /\  G  e.  _V )  ->  ( S  e. UPGraph  <->  (iEdg `  S
) : dom  (iEdg `  S ) --> { e  e.  ( ~P (Vtx `  S )  \  { (/)
} )  |  (
# `  e )  <_  2 } ) )
6158, 60syl 17 . . . . . . 7  |-  ( S SubGraph  G  ->  ( S  e. UPGraph  <->  (iEdg `  S ) : dom  (iEdg `  S ) --> { e  e.  ( ~P (Vtx `  S )  \  { (/) } )  |  ( # `  e
)  <_  2 }
) )
6261adantr 481 . . . . . 6  |-  ( ( S SubGraph  G  /\  G  e. UPGraph  )  ->  ( S  e. UPGraph  <->  (iEdg `  S ) : dom  (iEdg `  S ) --> { e  e.  ( ~P (Vtx `  S )  \  { (/) } )  |  ( # `  e
)  <_  2 }
) )
6362adantl 482 . . . . 5  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UPGraph  ) )  ->  ( S  e. UPGraph  <->  (iEdg `  S ) : dom  (iEdg `  S
) --> { e  e.  ( ~P (Vtx `  S )  \  { (/)
} )  |  (
# `  e )  <_  2 } ) )
6457, 63mpbird 247 . . . 4  |-  ( ( ( (Vtx `  S
)  C_  (Vtx `  G
)  /\  (iEdg `  S
)  C_  (iEdg `  G
)  /\  (Edg `  S
)  C_  ~P (Vtx `  S ) )  /\  ( S SubGraph  G  /\  G  e. UPGraph  ) )  ->  S  e. UPGraph  )
6564ex 450 . . 3  |-  ( ( (Vtx `  S )  C_  (Vtx `  G )  /\  (iEdg `  S )  C_  (iEdg `  G )  /\  (Edg `  S )  C_ 
~P (Vtx `  S
) )  ->  (
( S SubGraph  G  /\  G  e. UPGraph  )  ->  S  e. UPGraph  ) )
666, 65syl 17 . 2  |-  ( S SubGraph  G  ->  ( ( S SubGraph  G  /\  G  e. UPGraph  )  ->  S  e. UPGraph  ) )
6766anabsi8 861 1  |-  ( ( G  e. UPGraph  /\  S SubGraph  G )  ->  S  e. UPGraph  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   class class class wbr 4653   dom cdm 5114   ran crn 5115   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888    <_ cle 10075   2c2 11070   #chash 13117  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UHGraph cuhgr 25951   UPGraph cupgr 25975   SubGraph csubgr 26159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-subgr 26160
This theorem is referenced by:  upgrspan  26185
  Copyright terms: Public domain W3C validator