Step | Hyp | Ref
| Expression |
1 | | eqid 2622 |
. . . 4
Vtx  Vtx   |
2 | | eqid 2622 |
. . . 4
Vtx  Vtx   |
3 | | eqid 2622 |
. . . 4
iEdg  iEdg   |
4 | | eqid 2622 |
. . . 4
iEdg  iEdg   |
5 | | eqid 2622 |
. . . 4
Edg  Edg   |
6 | 1, 2, 3, 4, 5 | subgrprop2 26166 |
. . 3
 SubGraph  Vtx  Vtx  iEdg  iEdg  Edg   Vtx     |
7 | | upgruhgr 25997 |
. . . . . . . . . 10
 UPGraph UHGraph  |
8 | | subgruhgrfun 26174 |
. . . . . . . . . 10
  UHGraph
SubGraph 
iEdg    |
9 | 7, 8 | sylan 488 |
. . . . . . . . 9
  UPGraph
SubGraph 
iEdg    |
10 | 9 | ancoms 469 |
. . . . . . . 8
  SubGraph
UPGraph
iEdg    |
11 | | funfn 5918 |
. . . . . . . 8
 iEdg  iEdg  iEdg    |
12 | 10, 11 | sylib 208 |
. . . . . . 7
  SubGraph
UPGraph iEdg  iEdg    |
13 | 12 | adantl 482 |
. . . . . 6
   Vtx 
Vtx 
iEdg 
iEdg 
Edg 
 Vtx   
SubGraph UPGraph  iEdg  iEdg    |
14 | 7 | anim2i 593 |
. . . . . . . . . . . . . 14
  SubGraph
UPGraph  SubGraph
UHGraph   |
15 | 14 | adantl 482 |
. . . . . . . . . . . . 13
   Vtx 
Vtx 
iEdg 
iEdg 
Edg 
 Vtx   
SubGraph UPGraph   SubGraph UHGraph   |
16 | 15 | ancomd 467 |
. . . . . . . . . . . 12
   Vtx 
Vtx 
iEdg 
iEdg 
Edg 
 Vtx   
SubGraph UPGraph  
UHGraph SubGraph    |
17 | 16 | anim1i 592 |
. . . . . . . . . . 11
    Vtx  Vtx  iEdg  iEdg  Edg   Vtx    SubGraph
UPGraph 
iEdg     UHGraph
SubGraph 
iEdg     |
18 | 17 | simplld 791 |
. . . . . . . . . 10
    Vtx  Vtx  iEdg  iEdg  Edg   Vtx    SubGraph
UPGraph 
iEdg  
UHGraph  |
19 | | simpl 473 |
. . . . . . . . . . . 12
  SubGraph
UPGraph
SubGraph   |
20 | 19 | adantl 482 |
. . . . . . . . . . 11
   Vtx 
Vtx 
iEdg 
iEdg 
Edg 
 Vtx   
SubGraph UPGraph  SubGraph   |
21 | 20 | adantr 481 |
. . . . . . . . . 10
    Vtx  Vtx  iEdg  iEdg  Edg   Vtx    SubGraph
UPGraph 
iEdg   SubGraph   |
22 | | simpr 477 |
. . . . . . . . . 10
    Vtx  Vtx  iEdg  iEdg  Edg   Vtx    SubGraph
UPGraph 
iEdg  
iEdg    |
23 | 1, 3, 18, 21, 22 | subgruhgredgd 26176 |
. . . . . . . . 9
    Vtx  Vtx  iEdg  iEdg  Edg   Vtx    SubGraph
UPGraph 
iEdg    iEdg       Vtx       |
24 | 4 | uhgrfun 25961 |
. . . . . . . . . . . . . . . 16
 UHGraph
iEdg    |
25 | 7, 24 | syl 17 |
. . . . . . . . . . . . . . 15
 UPGraph
iEdg    |
26 | 25 | ad2antll 765 |
. . . . . . . . . . . . . 14
   Vtx 
Vtx 
iEdg 
iEdg 
Edg 
 Vtx   
SubGraph UPGraph  iEdg    |
27 | 26 | adantr 481 |
. . . . . . . . . . . . 13
    Vtx  Vtx  iEdg  iEdg  Edg   Vtx    SubGraph
UPGraph 
iEdg   iEdg    |
28 | | simpll2 1101 |
. . . . . . . . . . . . 13
    Vtx  Vtx  iEdg  iEdg  Edg   Vtx    SubGraph
UPGraph 
iEdg   iEdg  iEdg    |
29 | | funssfv 6209 |
. . . . . . . . . . . . 13
  iEdg 
iEdg 
iEdg 
iEdg  
 iEdg      iEdg       |
30 | 27, 28, 22, 29 | syl3anc 1326 |
. . . . . . . . . . . 12
    Vtx  Vtx  iEdg  iEdg  Edg   Vtx    SubGraph
UPGraph 
iEdg    iEdg      iEdg       |
31 | 30 | eqcomd 2628 |
. . . . . . . . . . 11
    Vtx  Vtx  iEdg  iEdg  Edg   Vtx    SubGraph
UPGraph 
iEdg    iEdg      iEdg       |
32 | 31 | fveq2d 6195 |
. . . . . . . . . 10
    Vtx  Vtx  iEdg  iEdg  Edg   Vtx    SubGraph
UPGraph 
iEdg       iEdg          iEdg        |
33 | | subgreldmiedg 26175 |
. . . . . . . . . . . . . . 15
  SubGraph
iEdg   iEdg    |
34 | 33 | ex 450 |
. . . . . . . . . . . . . 14
 SubGraph  iEdg  iEdg     |
35 | 34 | adantr 481 |
. . . . . . . . . . . . 13
  SubGraph
UPGraph  iEdg  iEdg     |
36 | 35 | adantl 482 |
. . . . . . . . . . . 12
   Vtx 
Vtx 
iEdg 
iEdg 
Edg 
 Vtx   
SubGraph UPGraph   iEdg  iEdg     |
37 | | simpr 477 |
. . . . . . . . . . . . . . 15
  iEdg  UPGraph
UPGraph  |
38 | | funfn 5918 |
. . . . . . . . . . . . . . . . 17
 iEdg  iEdg  iEdg    |
39 | 25, 38 | sylib 208 |
. . . . . . . . . . . . . . . 16
 UPGraph iEdg  iEdg    |
40 | 39 | adantl 482 |
. . . . . . . . . . . . . . 15
  iEdg  UPGraph
iEdg  iEdg    |
41 | | simpl 473 |
. . . . . . . . . . . . . . 15
  iEdg  UPGraph
iEdg    |
42 | 2, 4 | upgrle 25985 |
. . . . . . . . . . . . . . 15
  UPGraph
iEdg  iEdg 
iEdg       iEdg        |
43 | 37, 40, 41, 42 | syl3anc 1326 |
. . . . . . . . . . . . . 14
  iEdg  UPGraph
    iEdg        |
44 | 43 | expcom 451 |
. . . . . . . . . . . . 13
 UPGraph  iEdg      iEdg         |
45 | 44 | ad2antll 765 |
. . . . . . . . . . . 12
   Vtx 
Vtx 
iEdg 
iEdg 
Edg 
 Vtx   
SubGraph UPGraph   iEdg      iEdg         |
46 | 36, 45 | syld 47 |
. . . . . . . . . . 11
   Vtx 
Vtx 
iEdg 
iEdg 
Edg 
 Vtx   
SubGraph UPGraph   iEdg      iEdg         |
47 | 46 | imp 445 |
. . . . . . . . . 10
    Vtx  Vtx  iEdg  iEdg  Edg   Vtx    SubGraph
UPGraph 
iEdg       iEdg        |
48 | 32, 47 | eqbrtrd 4675 |
. . . . . . . . 9
    Vtx  Vtx  iEdg  iEdg  Edg   Vtx    SubGraph
UPGraph 
iEdg       iEdg        |
49 | | fveq2 6191 |
. . . . . . . . . . 11
  iEdg    
        iEdg        |
50 | 49 | breq1d 4663 |
. . . . . . . . . 10
  iEdg    
         iEdg         |
51 | 50 | elrab 3363 |
. . . . . . . . 9
  iEdg        Vtx        
   iEdg       Vtx         iEdg         |
52 | 23, 48, 51 | sylanbrc 698 |
. . . . . . . 8
    Vtx  Vtx  iEdg  iEdg  Edg   Vtx    SubGraph
UPGraph 
iEdg    iEdg        Vtx 
      
   |
53 | 52 | ralrimiva 2966 |
. . . . . . 7
   Vtx 
Vtx 
iEdg 
iEdg 
Edg 
 Vtx   
SubGraph UPGraph   iEdg    iEdg        Vtx            |
54 | | fnfvrnss 6390 |
. . . . . . 7
  iEdg  iEdg 
 iEdg    iEdg        Vtx           iEdg     Vtx 
      
   |
55 | 13, 53, 54 | syl2anc 693 |
. . . . . 6
   Vtx 
Vtx 
iEdg 
iEdg 
Edg 
 Vtx   
SubGraph UPGraph  iEdg     Vtx        
   |
56 | | df-f 5892 |
. . . . . 6
 iEdg    iEdg       Vtx        
  iEdg  iEdg 
iEdg     Vtx             |
57 | 13, 55, 56 | sylanbrc 698 |
. . . . 5
   Vtx 
Vtx 
iEdg 
iEdg 
Edg 
 Vtx   
SubGraph UPGraph  iEdg    iEdg       Vtx        
   |
58 | | subgrv 26162 |
. . . . . . . 8
 SubGraph 
   |
59 | 1, 3 | isupgr 25979 |
. . . . . . . . 9
 
UPGraph iEdg    iEdg       Vtx             |
60 | 59 | adantr 481 |
. . . . . . . 8
 
  UPGraph
iEdg    iEdg       Vtx             |
61 | 58, 60 | syl 17 |
. . . . . . 7
 SubGraph  UPGraph iEdg    iEdg       Vtx        
    |
62 | 61 | adantr 481 |
. . . . . 6
  SubGraph
UPGraph  UPGraph iEdg    iEdg       Vtx        
    |
63 | 62 | adantl 482 |
. . . . 5
   Vtx 
Vtx 
iEdg 
iEdg 
Edg 
 Vtx   
SubGraph UPGraph  
UPGraph iEdg    iEdg       Vtx             |
64 | 57, 63 | mpbird 247 |
. . . 4
   Vtx 
Vtx 
iEdg 
iEdg 
Edg 
 Vtx   
SubGraph UPGraph  UPGraph  |
65 | 64 | ex 450 |
. . 3
  Vtx  Vtx  iEdg  iEdg  Edg   Vtx     SubGraph
UPGraph UPGraph   |
66 | 6, 65 | syl 17 |
. 2
 SubGraph   SubGraph UPGraph UPGraph
  |
67 | 66 | anabsi8 861 |
1
  UPGraph
SubGraph  UPGraph  |