MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgextfv Structured version   Visualization version   Unicode version

Theorem symgextfv 17838
Description: The function value of the extension of a permutation, fixing the additional element, for elements in the original domain. (Contributed by AV, 6-Jan-2019.)
Hypotheses
Ref Expression
symgext.s  |-  S  =  ( Base `  ( SymGrp `
 ( N  \  { K } ) ) )
symgext.e  |-  E  =  ( x  e.  N  |->  if ( x  =  K ,  K , 
( Z `  x
) ) )
Assertion
Ref Expression
symgextfv  |-  ( ( K  e.  N  /\  Z  e.  S )  ->  ( X  e.  ( N  \  { K } )  ->  ( E `  X )  =  ( Z `  X ) ) )
Distinct variable groups:    x, K    x, N    x, S    x, Z    x, X
Allowed substitution hint:    E( x)

Proof of Theorem symgextfv
StepHypRef Expression
1 eldifi 3732 . . . 4  |-  ( X  e.  ( N  \  { K } )  ->  X  e.  N )
2 fvexd 6203 . . . . 5  |-  ( ( K  e.  N  /\  Z  e.  S )  ->  ( Z `  X
)  e.  _V )
3 ifexg 4157 . . . . 5  |-  ( ( K  e.  N  /\  ( Z `  X )  e.  _V )  ->  if ( X  =  K ,  K ,  ( Z `  X ) )  e.  _V )
42, 3syldan 487 . . . 4  |-  ( ( K  e.  N  /\  Z  e.  S )  ->  if ( X  =  K ,  K , 
( Z `  X
) )  e.  _V )
5 eqeq1 2626 . . . . . 6  |-  ( x  =  X  ->  (
x  =  K  <->  X  =  K ) )
6 fveq2 6191 . . . . . 6  |-  ( x  =  X  ->  ( Z `  x )  =  ( Z `  X ) )
75, 6ifbieq2d 4111 . . . . 5  |-  ( x  =  X  ->  if ( x  =  K ,  K ,  ( Z `
 x ) )  =  if ( X  =  K ,  K ,  ( Z `  X ) ) )
8 symgext.e . . . . 5  |-  E  =  ( x  e.  N  |->  if ( x  =  K ,  K , 
( Z `  x
) ) )
97, 8fvmptg 6280 . . . 4  |-  ( ( X  e.  N  /\  if ( X  =  K ,  K ,  ( Z `  X ) )  e.  _V )  ->  ( E `  X
)  =  if ( X  =  K ,  K ,  ( Z `  X ) ) )
101, 4, 9syl2anr 495 . . 3  |-  ( ( ( K  e.  N  /\  Z  e.  S
)  /\  X  e.  ( N  \  { K } ) )  -> 
( E `  X
)  =  if ( X  =  K ,  K ,  ( Z `  X ) ) )
11 eldifsn 4317 . . . . . 6  |-  ( X  e.  ( N  \  { K } )  <->  ( X  e.  N  /\  X  =/= 
K ) )
12 df-ne 2795 . . . . . . . 8  |-  ( X  =/=  K  <->  -.  X  =  K )
1312biimpi 206 . . . . . . 7  |-  ( X  =/=  K  ->  -.  X  =  K )
1413adantl 482 . . . . . 6  |-  ( ( X  e.  N  /\  X  =/=  K )  ->  -.  X  =  K
)
1511, 14sylbi 207 . . . . 5  |-  ( X  e.  ( N  \  { K } )  ->  -.  X  =  K
)
1615adantl 482 . . . 4  |-  ( ( ( K  e.  N  /\  Z  e.  S
)  /\  X  e.  ( N  \  { K } ) )  ->  -.  X  =  K
)
1716iffalsed 4097 . . 3  |-  ( ( ( K  e.  N  /\  Z  e.  S
)  /\  X  e.  ( N  \  { K } ) )  ->  if ( X  =  K ,  K ,  ( Z `  X ) )  =  ( Z `
 X ) )
1810, 17eqtrd 2656 . 2  |-  ( ( ( K  e.  N  /\  Z  e.  S
)  /\  X  e.  ( N  \  { K } ) )  -> 
( E `  X
)  =  ( Z `
 X ) )
1918ex 450 1  |-  ( ( K  e.  N  /\  Z  e.  S )  ->  ( X  e.  ( N  \  { K } )  ->  ( E `  X )  =  ( Z `  X ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571   ifcif 4086   {csn 4177    |-> cmpt 4729   ` cfv 5888   Basecbs 15857   SymGrpcsymg 17797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896
This theorem is referenced by:  symgextf1lem  17840  symgextf1  17841  symgextfo  17842  symgextres  17845
  Copyright terms: Public domain W3C validator