![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tg5segofs | Structured version Visualization version Unicode version |
Description: Rephrase axtg5seg 25364 using the outer five segment predicate. Theorem 2.10 of [Schwabhauser] p. 28. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
Ref | Expression |
---|---|
tg5segofs.p |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tg5segofs.m |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tg5segofs.s |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tg5segofs.g |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tg5segofs.a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tg5segofs.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tg5segofs.c |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tg5segofs.d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tg5segofs.e |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tg5segofs.f |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tg5segofs.o |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tg5segofs.h |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tg5segofs.i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tg5segofs.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
tg5segofs.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
tg5segofs |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tg5segofs.p |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | tg5segofs.m |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | tg5segofs.s |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | tg5segofs.g |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | tg5segofs.a |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | tg5segofs.b |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | tg5segofs.c |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | tg5segofs.e |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | tg5segofs.f |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | tg5segofs.h |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | tg5segofs.d |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
12 | tg5segofs.i |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
13 | tg5segofs.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | tg5segofs.1 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
15 | tg5segofs.o |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
16 | 1, 2, 3, 4, 15, 5, 6, 7, 11, 8, 9, 10, 12 | brafs 30750 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 14, 16 | mpbid 222 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 17 | simp1d 1073 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 18 | simpld 475 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 18 | simprd 479 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 17 | simp2d 1074 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 21 | simpld 475 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 21 | simprd 479 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 17 | simp3d 1075 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 24 | simpld 475 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | 24 | simprd 479 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
27 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 19, 20, 22, 23, 25, 26 | axtg5seg 25364 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-trkgcb 25349 df-trkg 25352 df-afs 30748 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |