| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brafs | Structured version Visualization version Unicode version | ||
| Description: Binary relation form of the outer five segment predicate. (Contributed by Scott Fenton, 21-Sep-2013.) |
| Ref | Expression |
|---|---|
| brafs.p |
|
| brafs.d |
|
| brafs.i |
|
| brafs.g |
|
| brafs.o |
|
| brafs.1 |
|
| brafs.2 |
|
| brafs.3 |
|
| brafs.4 |
|
| brafs.5 |
|
| brafs.6 |
|
| brafs.7 |
|
| brafs.8 |
|
| Ref | Expression |
|---|---|
| brafs |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 6657 |
. . . . 5
| |
| 2 | 1 | eleq2d 2687 |
. . . 4
|
| 3 | 2 | anbi1d 741 |
. . 3
|
| 4 | oveq1 6657 |
. . . . 5
| |
| 5 | 4 | eqeq1d 2624 |
. . . 4
|
| 6 | 5 | anbi1d 741 |
. . 3
|
| 7 | oveq1 6657 |
. . . . 5
| |
| 8 | 7 | eqeq1d 2624 |
. . . 4
|
| 9 | 8 | anbi1d 741 |
. . 3
|
| 10 | 3, 6, 9 | 3anbi123d 1399 |
. 2
|
| 11 | eleq1 2689 |
. . . 4
| |
| 12 | 11 | anbi1d 741 |
. . 3
|
| 13 | oveq2 6658 |
. . . . 5
| |
| 14 | 13 | eqeq1d 2624 |
. . . 4
|
| 15 | oveq1 6657 |
. . . . 5
| |
| 16 | 15 | eqeq1d 2624 |
. . . 4
|
| 17 | 14, 16 | anbi12d 747 |
. . 3
|
| 18 | oveq1 6657 |
. . . . 5
| |
| 19 | 18 | eqeq1d 2624 |
. . . 4
|
| 20 | 19 | anbi2d 740 |
. . 3
|
| 21 | 12, 17, 20 | 3anbi123d 1399 |
. 2
|
| 22 | oveq2 6658 |
. . . . 5
| |
| 23 | 22 | eleq2d 2687 |
. . . 4
|
| 24 | 23 | anbi1d 741 |
. . 3
|
| 25 | oveq2 6658 |
. . . . 5
| |
| 26 | 25 | eqeq1d 2624 |
. . . 4
|
| 27 | 26 | anbi2d 740 |
. . 3
|
| 28 | 24, 27 | 3anbi12d 1400 |
. 2
|
| 29 | oveq2 6658 |
. . . . 5
| |
| 30 | 29 | eqeq1d 2624 |
. . . 4
|
| 31 | oveq2 6658 |
. . . . 5
| |
| 32 | 31 | eqeq1d 2624 |
. . . 4
|
| 33 | 30, 32 | anbi12d 747 |
. . 3
|
| 34 | 33 | 3anbi3d 1405 |
. 2
|
| 35 | oveq1 6657 |
. . . . 5
| |
| 36 | 35 | eleq2d 2687 |
. . . 4
|
| 37 | 36 | anbi2d 740 |
. . 3
|
| 38 | oveq1 6657 |
. . . . 5
| |
| 39 | 38 | eqeq2d 2632 |
. . . 4
|
| 40 | 39 | anbi1d 741 |
. . 3
|
| 41 | oveq1 6657 |
. . . . 5
| |
| 42 | 41 | eqeq2d 2632 |
. . . 4
|
| 43 | 42 | anbi1d 741 |
. . 3
|
| 44 | 37, 40, 43 | 3anbi123d 1399 |
. 2
|
| 45 | eleq1 2689 |
. . . 4
| |
| 46 | 45 | anbi2d 740 |
. . 3
|
| 47 | oveq2 6658 |
. . . . 5
| |
| 48 | 47 | eqeq2d 2632 |
. . . 4
|
| 49 | oveq1 6657 |
. . . . 5
| |
| 50 | 49 | eqeq2d 2632 |
. . . 4
|
| 51 | 48, 50 | anbi12d 747 |
. . 3
|
| 52 | oveq1 6657 |
. . . . 5
| |
| 53 | 52 | eqeq2d 2632 |
. . . 4
|
| 54 | 53 | anbi2d 740 |
. . 3
|
| 55 | 46, 51, 54 | 3anbi123d 1399 |
. 2
|
| 56 | oveq2 6658 |
. . . . 5
| |
| 57 | 56 | eleq2d 2687 |
. . . 4
|
| 58 | 57 | anbi2d 740 |
. . 3
|
| 59 | oveq2 6658 |
. . . . 5
| |
| 60 | 59 | eqeq2d 2632 |
. . . 4
|
| 61 | 60 | anbi2d 740 |
. . 3
|
| 62 | 58, 61 | 3anbi12d 1400 |
. 2
|
| 63 | oveq2 6658 |
. . . . 5
| |
| 64 | 63 | eqeq2d 2632 |
. . . 4
|
| 65 | oveq2 6658 |
. . . . 5
| |
| 66 | 65 | eqeq2d 2632 |
. . . 4
|
| 67 | 64, 66 | anbi12d 747 |
. . 3
|
| 68 | 67 | 3anbi3d 1405 |
. 2
|
| 69 | brafs.o |
. . 3
| |
| 70 | brafs.p |
. . . 4
| |
| 71 | brafs.d |
. . . 4
| |
| 72 | brafs.i |
. . . 4
| |
| 73 | brafs.g |
. . . 4
| |
| 74 | 70, 71, 72, 73 | afsval 30749 |
. . 3
|
| 75 | 69, 74 | syl5eq 2668 |
. 2
|
| 76 | brafs.1 |
. 2
| |
| 77 | brafs.2 |
. 2
| |
| 78 | brafs.3 |
. 2
| |
| 79 | brafs.4 |
. 2
| |
| 80 | brafs.5 |
. 2
| |
| 81 | brafs.6 |
. 2
| |
| 82 | brafs.7 |
. 2
| |
| 83 | brafs.8 |
. 2
| |
| 84 | 10, 21, 28, 34, 44, 55, 62, 68, 75, 76, 77, 78, 79, 80, 81, 82, 83 | br8d 29422 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-afs 30748 |
| This theorem is referenced by: tg5segofs 30751 |
| Copyright terms: Public domain | W3C validator |