MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tghilberti1 Structured version   Visualization version   Unicode version

Theorem tghilberti1 25532
Description: There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p  |-  B  =  ( Base `  G
)
tglineelsb2.i  |-  I  =  (Itv `  G )
tglineelsb2.l  |-  L  =  (LineG `  G )
tglineelsb2.g  |-  ( ph  ->  G  e. TarskiG )
tglineelsb2.1  |-  ( ph  ->  P  e.  B )
tglineelsb2.2  |-  ( ph  ->  Q  e.  B )
tglineelsb2.4  |-  ( ph  ->  P  =/=  Q )
Assertion
Ref Expression
tghilberti1  |-  ( ph  ->  E. x  e.  ran  L ( P  e.  x  /\  Q  e.  x
) )
Distinct variable groups:    x, B    x, G    x, I    x, L    x, P    x, Q    ph, x

Proof of Theorem tghilberti1
StepHypRef Expression
1 tglineelsb2.p . . 3  |-  B  =  ( Base `  G
)
2 tglineelsb2.i . . 3  |-  I  =  (Itv `  G )
3 tglineelsb2.l . . 3  |-  L  =  (LineG `  G )
4 tglineelsb2.g . . 3  |-  ( ph  ->  G  e. TarskiG )
5 tglineelsb2.1 . . 3  |-  ( ph  ->  P  e.  B )
6 tglineelsb2.2 . . 3  |-  ( ph  ->  Q  e.  B )
7 tglineelsb2.4 . . 3  |-  ( ph  ->  P  =/=  Q )
81, 2, 3, 4, 5, 6, 7tgelrnln 25525 . 2  |-  ( ph  ->  ( P L Q )  e.  ran  L
)
91, 2, 3, 4, 5, 6, 7tglinerflx1 25528 . 2  |-  ( ph  ->  P  e.  ( P L Q ) )
101, 2, 3, 4, 5, 6, 7tglinerflx2 25529 . 2  |-  ( ph  ->  Q  e.  ( P L Q ) )
11 eleq2 2690 . . . 4  |-  ( x  =  ( P L Q )  ->  ( P  e.  x  <->  P  e.  ( P L Q ) ) )
12 eleq2 2690 . . . 4  |-  ( x  =  ( P L Q )  ->  ( Q  e.  x  <->  Q  e.  ( P L Q ) ) )
1311, 12anbi12d 747 . . 3  |-  ( x  =  ( P L Q )  ->  (
( P  e.  x  /\  Q  e.  x
)  <->  ( P  e.  ( P L Q )  /\  Q  e.  ( P L Q ) ) ) )
1413rspcev 3309 . 2  |-  ( ( ( P L Q )  e.  ran  L  /\  ( P  e.  ( P L Q )  /\  Q  e.  ( P L Q ) ) )  ->  E. x  e.  ran  L ( P  e.  x  /\  Q  e.  x ) )
158, 9, 10, 14syl12anc 1324 1  |-  ( ph  ->  E. x  e.  ran  L ( P  e.  x  /\  Q  e.  x
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   ran crn 5115   ` cfv 5888  (class class class)co 6650   Basecbs 15857  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352
This theorem is referenced by:  tglinethrueu  25534
  Copyright terms: Public domain W3C validator