MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglnne0 Structured version   Visualization version   Unicode version

Theorem tglnne0 25535
Description: A line  A has at least one point. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
tglnne0.l  |-  L  =  (LineG `  G )
tglnne0.g  |-  ( ph  ->  G  e. TarskiG )
tglnne0.1  |-  ( ph  ->  A  e.  ran  L
)
Assertion
Ref Expression
tglnne0  |-  ( ph  ->  A  =/=  (/) )

Proof of Theorem tglnne0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
2 eqid 2622 . . . . 5  |-  (Itv `  G )  =  (Itv
`  G )
3 tglnne0.l . . . . 5  |-  L  =  (LineG `  G )
4 tglnne0.g . . . . . 6  |-  ( ph  ->  G  e. TarskiG )
54ad3antrrr 766 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  ( Base `  G ) )  /\  y  e.  ( Base `  G ) )  /\  ( A  =  (
x L y )  /\  x  =/=  y
) )  ->  G  e. TarskiG )
6 simpllr 799 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  ( Base `  G ) )  /\  y  e.  ( Base `  G ) )  /\  ( A  =  (
x L y )  /\  x  =/=  y
) )  ->  x  e.  ( Base `  G
) )
7 simplr 792 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  ( Base `  G ) )  /\  y  e.  ( Base `  G ) )  /\  ( A  =  (
x L y )  /\  x  =/=  y
) )  ->  y  e.  ( Base `  G
) )
8 simprr 796 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  ( Base `  G ) )  /\  y  e.  ( Base `  G ) )  /\  ( A  =  (
x L y )  /\  x  =/=  y
) )  ->  x  =/=  y )
91, 2, 3, 5, 6, 7, 8tglinerflx1 25528 . . . 4  |-  ( ( ( ( ph  /\  x  e.  ( Base `  G ) )  /\  y  e.  ( Base `  G ) )  /\  ( A  =  (
x L y )  /\  x  =/=  y
) )  ->  x  e.  ( x L y ) )
10 simprl 794 . . . 4  |-  ( ( ( ( ph  /\  x  e.  ( Base `  G ) )  /\  y  e.  ( Base `  G ) )  /\  ( A  =  (
x L y )  /\  x  =/=  y
) )  ->  A  =  ( x L y ) )
119, 10eleqtrrd 2704 . . 3  |-  ( ( ( ( ph  /\  x  e.  ( Base `  G ) )  /\  y  e.  ( Base `  G ) )  /\  ( A  =  (
x L y )  /\  x  =/=  y
) )  ->  x  e.  A )
12 ne0i 3921 . . 3  |-  ( x  e.  A  ->  A  =/=  (/) )
1311, 12syl 17 . 2  |-  ( ( ( ( ph  /\  x  e.  ( Base `  G ) )  /\  y  e.  ( Base `  G ) )  /\  ( A  =  (
x L y )  /\  x  =/=  y
) )  ->  A  =/=  (/) )
14 tglnne0.1 . . 3  |-  ( ph  ->  A  e.  ran  L
)
151, 2, 3, 4, 14tgisline 25522 . 2  |-  ( ph  ->  E. x  e.  (
Base `  G ) E. y  e.  ( Base `  G ) ( A  =  ( x L y )  /\  x  =/=  y ) )
1613, 15r19.29vva 3081 1  |-  ( ph  ->  A  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   (/)c0 3915   ran crn 5115   ` cfv 5888  (class class class)co 6650   Basecbs 15857  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352
This theorem is referenced by:  hpgerlem  25657
  Copyright terms: Public domain W3C validator