| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tglnpt2 | Structured version Visualization version Unicode version | ||
| Description: Find a second point on a line. (Contributed by Thierry Arnoux, 18-Oct-2019.) |
| Ref | Expression |
|---|---|
| tglnpt2.p |
|
| tglnpt2.i |
|
| tglnpt2.l |
|
| tglnpt2.g |
|
| tglnpt2.a |
|
| tglnpt2.x |
|
| Ref | Expression |
|---|---|
| tglnpt2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglnpt2.p |
. . . . . 6
| |
| 2 | tglnpt2.i |
. . . . . 6
| |
| 3 | tglnpt2.l |
. . . . . 6
| |
| 4 | tglnpt2.g |
. . . . . . 7
| |
| 5 | 4 | ad4antr 768 |
. . . . . 6
|
| 6 | simp-4r 807 |
. . . . . 6
| |
| 7 | simpllr 799 |
. . . . . 6
| |
| 8 | simplrr 801 |
. . . . . 6
| |
| 9 | 1, 2, 3, 5, 6, 7, 8 | tglinerflx2 25529 |
. . . . 5
|
| 10 | simplrl 800 |
. . . . 5
| |
| 11 | 9, 10 | eleqtrrd 2704 |
. . . 4
|
| 12 | simpr 477 |
. . . . 5
| |
| 13 | 12, 8 | eqnetrd 2861 |
. . . 4
|
| 14 | neeq2 2857 |
. . . . 5
| |
| 15 | 14 | rspcev 3309 |
. . . 4
|
| 16 | 11, 13, 15 | syl2anc 693 |
. . 3
|
| 17 | 4 | ad4antr 768 |
. . . . . 6
|
| 18 | simp-4r 807 |
. . . . . 6
| |
| 19 | simpllr 799 |
. . . . . 6
| |
| 20 | simplrr 801 |
. . . . . 6
| |
| 21 | 1, 2, 3, 17, 18, 19, 20 | tglinerflx1 25528 |
. . . . 5
|
| 22 | simplrl 800 |
. . . . 5
| |
| 23 | 21, 22 | eleqtrrd 2704 |
. . . 4
|
| 24 | simpr 477 |
. . . 4
| |
| 25 | neeq2 2857 |
. . . . 5
| |
| 26 | 25 | rspcev 3309 |
. . . 4
|
| 27 | 23, 24, 26 | syl2anc 693 |
. . 3
|
| 28 | 16, 27 | pm2.61dane 2881 |
. 2
|
| 29 | tglnpt2.a |
. . 3
| |
| 30 | 1, 2, 3, 4, 29 | tgisline 25522 |
. 2
|
| 31 | 28, 30 | r19.29vva 3081 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-trkgc 25347 df-trkgb 25348 df-trkgcb 25349 df-trkg 25352 |
| This theorem is referenced by: perpneq 25609 perpdrag 25620 oppperpex 25645 lnperpex 25695 |
| Copyright terms: Public domain | W3C validator |