MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglnpt2 Structured version   Visualization version   Unicode version

Theorem tglnpt2 25536
Description: Find a second point on a line. (Contributed by Thierry Arnoux, 18-Oct-2019.)
Hypotheses
Ref Expression
tglnpt2.p  |-  P  =  ( Base `  G
)
tglnpt2.i  |-  I  =  (Itv `  G )
tglnpt2.l  |-  L  =  (LineG `  G )
tglnpt2.g  |-  ( ph  ->  G  e. TarskiG )
tglnpt2.a  |-  ( ph  ->  A  e.  ran  L
)
tglnpt2.x  |-  ( ph  ->  X  e.  A )
Assertion
Ref Expression
tglnpt2  |-  ( ph  ->  E. y  e.  A  X  =/=  y )
Distinct variable groups:    y, A    y, X
Allowed substitution hints:    ph( y)    P( y)    G( y)    I( y)    L( y)

Proof of Theorem tglnpt2
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglnpt2.p . . . . . 6  |-  P  =  ( Base `  G
)
2 tglnpt2.i . . . . . 6  |-  I  =  (Itv `  G )
3 tglnpt2.l . . . . . 6  |-  L  =  (LineG `  G )
4 tglnpt2.g . . . . . . 7  |-  ( ph  ->  G  e. TarskiG )
54ad4antr 768 . . . . . 6  |-  ( ( ( ( ( ph  /\  x  e.  P )  /\  z  e.  P
)  /\  ( A  =  ( x L z )  /\  x  =/=  z ) )  /\  X  =  x )  ->  G  e. TarskiG )
6 simp-4r 807 . . . . . 6  |-  ( ( ( ( ( ph  /\  x  e.  P )  /\  z  e.  P
)  /\  ( A  =  ( x L z )  /\  x  =/=  z ) )  /\  X  =  x )  ->  x  e.  P )
7 simpllr 799 . . . . . 6  |-  ( ( ( ( ( ph  /\  x  e.  P )  /\  z  e.  P
)  /\  ( A  =  ( x L z )  /\  x  =/=  z ) )  /\  X  =  x )  ->  z  e.  P )
8 simplrr 801 . . . . . 6  |-  ( ( ( ( ( ph  /\  x  e.  P )  /\  z  e.  P
)  /\  ( A  =  ( x L z )  /\  x  =/=  z ) )  /\  X  =  x )  ->  x  =/=  z )
91, 2, 3, 5, 6, 7, 8tglinerflx2 25529 . . . . 5  |-  ( ( ( ( ( ph  /\  x  e.  P )  /\  z  e.  P
)  /\  ( A  =  ( x L z )  /\  x  =/=  z ) )  /\  X  =  x )  ->  z  e.  ( x L z ) )
10 simplrl 800 . . . . 5  |-  ( ( ( ( ( ph  /\  x  e.  P )  /\  z  e.  P
)  /\  ( A  =  ( x L z )  /\  x  =/=  z ) )  /\  X  =  x )  ->  A  =  ( x L z ) )
119, 10eleqtrrd 2704 . . . 4  |-  ( ( ( ( ( ph  /\  x  e.  P )  /\  z  e.  P
)  /\  ( A  =  ( x L z )  /\  x  =/=  z ) )  /\  X  =  x )  ->  z  e.  A )
12 simpr 477 . . . . 5  |-  ( ( ( ( ( ph  /\  x  e.  P )  /\  z  e.  P
)  /\  ( A  =  ( x L z )  /\  x  =/=  z ) )  /\  X  =  x )  ->  X  =  x )
1312, 8eqnetrd 2861 . . . 4  |-  ( ( ( ( ( ph  /\  x  e.  P )  /\  z  e.  P
)  /\  ( A  =  ( x L z )  /\  x  =/=  z ) )  /\  X  =  x )  ->  X  =/=  z )
14 neeq2 2857 . . . . 5  |-  ( y  =  z  ->  ( X  =/=  y  <->  X  =/=  z ) )
1514rspcev 3309 . . . 4  |-  ( ( z  e.  A  /\  X  =/=  z )  ->  E. y  e.  A  X  =/=  y )
1611, 13, 15syl2anc 693 . . 3  |-  ( ( ( ( ( ph  /\  x  e.  P )  /\  z  e.  P
)  /\  ( A  =  ( x L z )  /\  x  =/=  z ) )  /\  X  =  x )  ->  E. y  e.  A  X  =/=  y )
174ad4antr 768 . . . . . 6  |-  ( ( ( ( ( ph  /\  x  e.  P )  /\  z  e.  P
)  /\  ( A  =  ( x L z )  /\  x  =/=  z ) )  /\  X  =/=  x )  ->  G  e. TarskiG )
18 simp-4r 807 . . . . . 6  |-  ( ( ( ( ( ph  /\  x  e.  P )  /\  z  e.  P
)  /\  ( A  =  ( x L z )  /\  x  =/=  z ) )  /\  X  =/=  x )  ->  x  e.  P )
19 simpllr 799 . . . . . 6  |-  ( ( ( ( ( ph  /\  x  e.  P )  /\  z  e.  P
)  /\  ( A  =  ( x L z )  /\  x  =/=  z ) )  /\  X  =/=  x )  -> 
z  e.  P )
20 simplrr 801 . . . . . 6  |-  ( ( ( ( ( ph  /\  x  e.  P )  /\  z  e.  P
)  /\  ( A  =  ( x L z )  /\  x  =/=  z ) )  /\  X  =/=  x )  ->  x  =/=  z )
211, 2, 3, 17, 18, 19, 20tglinerflx1 25528 . . . . 5  |-  ( ( ( ( ( ph  /\  x  e.  P )  /\  z  e.  P
)  /\  ( A  =  ( x L z )  /\  x  =/=  z ) )  /\  X  =/=  x )  ->  x  e.  ( x L z ) )
22 simplrl 800 . . . . 5  |-  ( ( ( ( ( ph  /\  x  e.  P )  /\  z  e.  P
)  /\  ( A  =  ( x L z )  /\  x  =/=  z ) )  /\  X  =/=  x )  ->  A  =  ( x L z ) )
2321, 22eleqtrrd 2704 . . . 4  |-  ( ( ( ( ( ph  /\  x  e.  P )  /\  z  e.  P
)  /\  ( A  =  ( x L z )  /\  x  =/=  z ) )  /\  X  =/=  x )  ->  x  e.  A )
24 simpr 477 . . . 4  |-  ( ( ( ( ( ph  /\  x  e.  P )  /\  z  e.  P
)  /\  ( A  =  ( x L z )  /\  x  =/=  z ) )  /\  X  =/=  x )  ->  X  =/=  x )
25 neeq2 2857 . . . . 5  |-  ( y  =  x  ->  ( X  =/=  y  <->  X  =/=  x ) )
2625rspcev 3309 . . . 4  |-  ( ( x  e.  A  /\  X  =/=  x )  ->  E. y  e.  A  X  =/=  y )
2723, 24, 26syl2anc 693 . . 3  |-  ( ( ( ( ( ph  /\  x  e.  P )  /\  z  e.  P
)  /\  ( A  =  ( x L z )  /\  x  =/=  z ) )  /\  X  =/=  x )  ->  E. y  e.  A  X  =/=  y )
2816, 27pm2.61dane 2881 . 2  |-  ( ( ( ( ph  /\  x  e.  P )  /\  z  e.  P
)  /\  ( A  =  ( x L z )  /\  x  =/=  z ) )  ->  E. y  e.  A  X  =/=  y )
29 tglnpt2.a . . 3  |-  ( ph  ->  A  e.  ran  L
)
301, 2, 3, 4, 29tgisline 25522 . 2  |-  ( ph  ->  E. x  e.  P  E. z  e.  P  ( A  =  (
x L z )  /\  x  =/=  z
) )
3128, 30r19.29vva 3081 1  |-  ( ph  ->  E. y  e.  A  X  =/=  y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   ran crn 5115   ` cfv 5888  (class class class)co 6650   Basecbs 15857  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352
This theorem is referenced by:  perpneq  25609  perpdrag  25620  oppperpex  25645  lnperpex  25695
  Copyright terms: Public domain W3C validator