MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trin2 Structured version   Visualization version   Unicode version

Theorem trin2 5519
Description: The intersection of two transitive classes is transitive. (Contributed by FL, 31-Jul-2009.)
Assertion
Ref Expression
trin2  |-  ( ( ( R  o.  R
)  C_  R  /\  ( S  o.  S
)  C_  S )  ->  ( ( R  i^i  S )  o.  ( R  i^i  S ) ) 
C_  ( R  i^i  S ) )

Proof of Theorem trin2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cotr 5508 . . . 4  |-  ( ( R  o.  R ) 
C_  R  <->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )
2 cotr 5508 . . . . . 6  |-  ( ( S  o.  S ) 
C_  S  <->  A. x A. y A. z ( ( x S y  /\  y S z )  ->  x S
z ) )
3 brin 4704 . . . . . . . . . . . . 13  |-  ( x ( R  i^i  S
) y  <->  ( x R y  /\  x S y ) )
4 brin 4704 . . . . . . . . . . . . 13  |-  ( y ( R  i^i  S
) z  <->  ( y R z  /\  y S z ) )
5 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x S y  /\  y S z )  ->  x S z )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  ( ( x R y  /\  y R z )  ->  x R z ) )
6 simpl 473 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x S y  /\  y S z )  ->  x S z )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  ( ( x S y  /\  y S z )  ->  x S z ) )
75, 6anim12d 586 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x S y  /\  y S z )  ->  x S z )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  ( ( ( x R y  /\  y R z )  /\  ( x S y  /\  y S z ) )  ->  (
x R z  /\  x S z ) ) )
87com12 32 . . . . . . . . . . . . . 14  |-  ( ( ( x R y  /\  y R z )  /\  ( x S y  /\  y S z ) )  ->  ( ( ( ( x S y  /\  y S z )  ->  x S
z )  /\  (
( x R y  /\  y R z )  ->  x R
z ) )  -> 
( x R z  /\  x S z ) ) )
98an4s 869 . . . . . . . . . . . . 13  |-  ( ( ( x R y  /\  x S y )  /\  ( y R z  /\  y S z ) )  ->  ( ( ( ( x S y  /\  y S z )  ->  x S
z )  /\  (
( x R y  /\  y R z )  ->  x R
z ) )  -> 
( x R z  /\  x S z ) ) )
103, 4, 9syl2anb 496 . . . . . . . . . . . 12  |-  ( ( x ( R  i^i  S ) y  /\  y
( R  i^i  S
) z )  -> 
( ( ( ( x S y  /\  y S z )  ->  x S z )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  ( x R z  /\  x S z ) ) )
1110com12 32 . . . . . . . . . . 11  |-  ( ( ( ( x S y  /\  y S z )  ->  x S z )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  -> 
( x R z  /\  x S z ) ) )
12 brin 4704 . . . . . . . . . . 11  |-  ( x ( R  i^i  S
) z  <->  ( x R z  /\  x S z ) )
1311, 12syl6ibr 242 . . . . . . . . . 10  |-  ( ( ( ( x S y  /\  y S z )  ->  x S z )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) )
1413alanimi 1744 . . . . . . . . 9  |-  ( ( A. z ( ( x S y  /\  y S z )  ->  x S z )  /\  A. z ( ( x R y  /\  y R z )  ->  x R z ) )  ->  A. z ( ( x ( R  i^i  S ) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) )
1514alanimi 1744 . . . . . . . 8  |-  ( ( A. y A. z
( ( x S y  /\  y S z )  ->  x S z )  /\  A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )  ->  A. y A. z ( ( x ( R  i^i  S ) y  /\  y ( R  i^i  S ) z )  ->  x ( R  i^i  S ) z ) )
1615alanimi 1744 . . . . . . 7  |-  ( ( A. x A. y A. z ( ( x S y  /\  y S z )  ->  x S z )  /\  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) )  ->  A. x A. y A. z ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) )
1716ex 450 . . . . . 6  |-  ( A. x A. y A. z
( ( x S y  /\  y S z )  ->  x S z )  -> 
( A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R z )  ->  A. x A. y A. z ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) ) )
182, 17sylbi 207 . . . . 5  |-  ( ( S  o.  S ) 
C_  S  ->  ( A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R z )  ->  A. x A. y A. z ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) ) )
1918com12 32 . . . 4  |-  ( A. x A. y A. z
( ( x R y  /\  y R z )  ->  x R z )  -> 
( ( S  o.  S )  C_  S  ->  A. x A. y A. z ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) ) )
201, 19sylbi 207 . . 3  |-  ( ( R  o.  R ) 
C_  R  ->  (
( S  o.  S
)  C_  S  ->  A. x A. y A. z ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) ) )
2120imp 445 . 2  |-  ( ( ( R  o.  R
)  C_  R  /\  ( S  o.  S
)  C_  S )  ->  A. x A. y A. z ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) )
22 cotr 5508 . 2  |-  ( ( ( R  i^i  S
)  o.  ( R  i^i  S ) ) 
C_  ( R  i^i  S )  <->  A. x A. y A. z ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) )
2321, 22sylibr 224 1  |-  ( ( ( R  o.  R
)  C_  R  /\  ( S  o.  S
)  C_  S )  ->  ( ( R  i^i  S )  o.  ( R  i^i  S ) ) 
C_  ( R  i^i  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481    i^i cin 3573    C_ wss 3574   class class class wbr 4653    o. ccom 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-co 5123
This theorem is referenced by:  trinxp  5521  trficl  37961
  Copyright terms: Public domain W3C validator