| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > poirr2 | Structured version Visualization version Unicode version | ||
| Description: A partial order relation is irreflexive. (Contributed by Mario Carneiro, 2-Nov-2015.) |
| Ref | Expression |
|---|---|
| poirr2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5426 |
. . . 4
| |
| 2 | relin2 5237 |
. . . 4
| |
| 3 | 1, 2 | mp1i 13 |
. . 3
|
| 4 | df-br 4654 |
. . . . 5
| |
| 5 | brin 4704 |
. . . . 5
| |
| 6 | 4, 5 | bitr3i 266 |
. . . 4
|
| 7 | vex 3203 |
. . . . . . . . 9
| |
| 8 | 7 | brres 5402 |
. . . . . . . 8
|
| 9 | poirr 5046 |
. . . . . . . . . . 11
| |
| 10 | 7 | ideq 5274 |
. . . . . . . . . . . . 13
|
| 11 | breq2 4657 |
. . . . . . . . . . . . 13
| |
| 12 | 10, 11 | sylbi 207 |
. . . . . . . . . . . 12
|
| 13 | 12 | notbid 308 |
. . . . . . . . . . 11
|
| 14 | 9, 13 | syl5ibcom 235 |
. . . . . . . . . 10
|
| 15 | 14 | expimpd 629 |
. . . . . . . . 9
|
| 16 | 15 | ancomsd 470 |
. . . . . . . 8
|
| 17 | 8, 16 | syl5bi 232 |
. . . . . . 7
|
| 18 | 17 | con2d 129 |
. . . . . 6
|
| 19 | imnan 438 |
. . . . . 6
| |
| 20 | 18, 19 | sylib 208 |
. . . . 5
|
| 21 | 20 | pm2.21d 118 |
. . . 4
|
| 22 | 6, 21 | syl5bi 232 |
. . 3
|
| 23 | 3, 22 | relssdv 5212 |
. 2
|
| 24 | ss0 3974 |
. 2
| |
| 25 | 23, 24 | syl 17 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-id 5024 df-po 5035 df-xp 5120 df-rel 5121 df-res 5126 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |