Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  truae Structured version   Visualization version   Unicode version

Theorem truae 30306
Description: A truth holds almost everywhere. (Contributed by Thierry Arnoux, 20-Oct-2017.)
Hypotheses
Ref Expression
truae.1  |-  U. dom  M  =  O
truae.2  |-  ( ph  ->  M  e.  U. ran measures )
truae.3  |-  ( ph  ->  ps )
Assertion
Ref Expression
truae  |-  ( ph  ->  { x  e.  O  |  ps }a.e. M )
Distinct variable groups:    x, O    ph, x
Allowed substitution hints:    ps( x)    M( x)

Proof of Theorem truae
StepHypRef Expression
1 truae.3 . . . . . . . 8  |-  ( ph  ->  ps )
21pm2.24d 147 . . . . . . 7  |-  ( ph  ->  ( -.  ps  ->  x  e.  (/) ) )
32ralrimivw 2967 . . . . . 6  |-  ( ph  ->  A. x  e.  O  ( -.  ps  ->  x  e.  (/) ) )
4 rabss 3679 . . . . . 6  |-  ( { x  e.  O  |  -.  ps }  C_  (/)  <->  A. x  e.  O  ( -.  ps  ->  x  e.  (/) ) )
53, 4sylibr 224 . . . . 5  |-  ( ph  ->  { x  e.  O  |  -.  ps }  C_  (/) )
6 ss0 3974 . . . . 5  |-  ( { x  e.  O  |  -.  ps }  C_  (/)  ->  { x  e.  O  |  -.  ps }  =  (/) )
75, 6syl 17 . . . 4  |-  ( ph  ->  { x  e.  O  |  -.  ps }  =  (/) )
87fveq2d 6195 . . 3  |-  ( ph  ->  ( M `  {
x  e.  O  |  -.  ps } )  =  ( M `  (/) ) )
9 truae.2 . . . 4  |-  ( ph  ->  M  e.  U. ran measures )
10 measbasedom 30265 . . . . 5  |-  ( M  e.  U. ran measures  <->  M  e.  (measures `  dom  M ) )
11 measvnul 30269 . . . . 5  |-  ( M  e.  (measures `  dom  M )  ->  ( M `  (/) )  =  0 )
1210, 11sylbi 207 . . . 4  |-  ( M  e.  U. ran measures  ->  ( M `  (/) )  =  0 )
139, 12syl 17 . . 3  |-  ( ph  ->  ( M `  (/) )  =  0 )
148, 13eqtrd 2656 . 2  |-  ( ph  ->  ( M `  {
x  e.  O  |  -.  ps } )  =  0 )
15 truae.1 . . . 4  |-  U. dom  M  =  O
1615braew 30305 . . 3  |-  ( M  e.  U. ran measures  ->  ( { x  e.  O  |  ps }a.e. M  <->  ( M `  { x  e.  O  |  -.  ps } )  =  0 ) )
179, 16syl 17 . 2  |-  ( ph  ->  ( { x  e.  O  |  ps }a.e. M 
<->  ( M `  {
x  e.  O  |  -.  ps } )  =  0 ) )
1814, 17mpbird 247 1  |-  ( ph  ->  { x  e.  O  |  ps }a.e. M )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    C_ wss 3574   (/)c0 3915   U.cuni 4436   class class class wbr 4653   dom cdm 5114   ran crn 5115   ` cfv 5888   0cc0 9936  measurescmeas 30258  a.e.cae 30300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-esum 30090  df-meas 30259  df-ae 30302
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator