MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tusval Structured version   Visualization version   Unicode version

Theorem tusval 22070
Description: The value of the uniform space mapping function. (Contributed by Thierry Arnoux, 5-Dec-2017.)
Assertion
Ref Expression
tusval  |-  ( U  e.  (UnifOn `  X
)  ->  (toUnifSp `  U
)  =  ( {
<. ( Base `  ndx ) ,  dom  U. U >. ,  <. ( UnifSet `  ndx ) ,  U >. } sSet  <. (TopSet `  ndx ) ,  (unifTop `  U ) >. ) )

Proof of Theorem tusval
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 df-tus 22062 . . 3  |- toUnifSp  =  ( u  e.  U. ran UnifOn  |->  ( { <. ( Base `  ndx ) ,  dom  U. u >. ,  <. ( UnifSet `  ndx ) ,  u >. } sSet  <. (TopSet `  ndx ) ,  (unifTop `  u ) >. ) )
21a1i 11 . 2  |-  ( U  e.  (UnifOn `  X
)  -> toUnifSp  =  ( u  e.  U. ran UnifOn  |->  ( {
<. ( Base `  ndx ) ,  dom  U. u >. ,  <. ( UnifSet `  ndx ) ,  u >. } sSet  <. (TopSet `  ndx ) ,  (unifTop `  u ) >. ) ) )
3 simpr 477 . . . . . . 7  |-  ( ( U  e.  (UnifOn `  X )  /\  u  =  U )  ->  u  =  U )
43unieqd 4446 . . . . . 6  |-  ( ( U  e.  (UnifOn `  X )  /\  u  =  U )  ->  U. u  =  U. U )
54dmeqd 5326 . . . . 5  |-  ( ( U  e.  (UnifOn `  X )  /\  u  =  U )  ->  dom  U. u  =  dom  U. U )
65opeq2d 4409 . . . 4  |-  ( ( U  e.  (UnifOn `  X )  /\  u  =  U )  ->  <. ( Base `  ndx ) ,  dom  U. u >.  = 
<. ( Base `  ndx ) ,  dom  U. U >. )
73opeq2d 4409 . . . 4  |-  ( ( U  e.  (UnifOn `  X )  /\  u  =  U )  ->  <. ( UnifSet
`  ndx ) ,  u >.  =  <. ( UnifSet `  ndx ) ,  U >. )
86, 7preq12d 4276 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  u  =  U )  ->  { <. (
Base `  ndx ) ,  dom  U. u >. , 
<. ( UnifSet `  ndx ) ,  u >. }  =  { <. ( Base `  ndx ) ,  dom  U. U >. ,  <. ( UnifSet `  ndx ) ,  U >. } )
93fveq2d 6195 . . . 4  |-  ( ( U  e.  (UnifOn `  X )  /\  u  =  U )  ->  (unifTop `  u )  =  (unifTop `  U ) )
109opeq2d 4409 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  u  =  U )  ->  <. (TopSet ` 
ndx ) ,  (unifTop `  u ) >.  =  <. (TopSet `  ndx ) ,  (unifTop `  U ) >. )
118, 10oveq12d 6668 . 2  |-  ( ( U  e.  (UnifOn `  X )  /\  u  =  U )  ->  ( { <. ( Base `  ndx ) ,  dom  U. u >. ,  <. ( UnifSet `  ndx ) ,  u >. } sSet  <. (TopSet `  ndx ) ,  (unifTop `  u ) >. )  =  ( {
<. ( Base `  ndx ) ,  dom  U. U >. ,  <. ( UnifSet `  ndx ) ,  U >. } sSet  <. (TopSet `  ndx ) ,  (unifTop `  U ) >. ) )
12 elrnust 22028 . 2  |-  ( U  e.  (UnifOn `  X
)  ->  U  e.  U.
ran UnifOn )
13 ovexd 6680 . 2  |-  ( U  e.  (UnifOn `  X
)  ->  ( { <. ( Base `  ndx ) ,  dom  U. U >. ,  <. ( UnifSet `  ndx ) ,  U >. } sSet  <. (TopSet `  ndx ) ,  (unifTop `  U ) >. )  e.  _V )
142, 11, 12, 13fvmptd 6288 1  |-  ( U  e.  (UnifOn `  X
)  ->  (toUnifSp `  U
)  =  ( {
<. ( Base `  ndx ) ,  dom  U. U >. ,  <. ( UnifSet `  ndx ) ,  U >. } sSet  <. (TopSet `  ndx ) ,  (unifTop `  U ) >. ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   {cpr 4179   <.cop 4183   U.cuni 4436    |-> cmpt 4729   dom cdm 5114   ran crn 5115   ` cfv 5888  (class class class)co 6650   ndxcnx 15854   sSet csts 15855   Basecbs 15857  TopSetcts 15947   UnifSetcunif 15951  UnifOncust 22003  unifTopcutop 22034  toUnifSpctus 22059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-ov 6653  df-ust 22004  df-tus 22062
This theorem is referenced by:  tuslem  22071
  Copyright terms: Public domain W3C validator