Proof of Theorem tuslem
Step | Hyp | Ref
| Expression |
1 | | baseid 15919 |
. . . 4
Slot      |
2 | | 1re 10039 |
. . . . . 6
 |
3 | | 1lt9 11229 |
. . . . . 6
 |
4 | 2, 3 | ltneii 10150 |
. . . . 5
 |
5 | | basendx 15923 |
. . . . . 6
     |
6 | | tsetndx 16040 |
. . . . . 6
TopSet 
 |
7 | 5, 6 | neeq12i 2860 |
. . . . 5
     TopSet 
  |
8 | 4, 7 | mpbir 221 |
. . . 4
    TopSet   |
9 | 1, 8 | setsnid 15915 |
. . 3
         
        
                         sSet
 TopSet   unifTop      |
10 | | ustbas2 22029 |
. . . 4
 UnifOn 
   |
11 | | uniexg 6955 |
. . . . 5
 UnifOn 
   |
12 | | dmexg 7097 |
. . . . 5
 

  |
13 | | eqid 2622 |
. . . . . 6
                        
        
   |
14 | | df-unif 15965 |
. . . . . 6
Slot ;  |
15 | | 1nn 11031 |
. . . . . . 7
 |
16 | | 3nn0 11310 |
. . . . . . 7
 |
17 | | 1nn0 11308 |
. . . . . . 7
 |
18 | | 1lt10 11681 |
. . . . . . 7
;  |
19 | 15, 16, 17, 18 | declti 11546 |
. . . . . 6
;  |
20 | | 3nn 11186 |
. . . . . . 7
 |
21 | 17, 20 | decnncl 11518 |
. . . . . 6
;  |
22 | 13, 14, 19, 21 | 2strbas 15984 |
. . . . 5
 
          
        
     |
23 | 11, 12, 22 | 3syl 18 |
. . . 4
 UnifOn 
          
        
     |
24 | 10, 23 | eqtrd 2656 |
. . 3
 UnifOn 
                        |
25 | | tuslem.k |
. . . . 5
toUnifSp   |
26 | | tusval 22070 |
. . . . 5
 UnifOn 
toUnifSp         
        
  sSet  TopSet   unifTop      |
27 | 25, 26 | syl5eq 2668 |
. . . 4
 UnifOn 
       
        
  sSet  TopSet   unifTop      |
28 | 27 | fveq2d 6195 |
. . 3
 UnifOn 
              
        
  sSet  TopSet   unifTop       |
29 | 9, 24, 28 | 3eqtr4a 2682 |
. 2
 UnifOn 
      |
30 | | unifid 16065 |
. . . 4
Slot      |
31 | | 9re 11107 |
. . . . . 6
 |
32 | | 9nn0 11316 |
. . . . . . 7
 |
33 | | 9lt10 11673 |
. . . . . . 7
;  |
34 | 15, 16, 32, 33 | declti 11546 |
. . . . . 6
;  |
35 | 31, 34 | gtneii 10149 |
. . . . 5
;  |
36 | | unifndx 16064 |
. . . . . 6
    ;  |
37 | 36, 6 | neeq12i 2860 |
. . . . 5
     TopSet 
;   |
38 | 35, 37 | mpbir 221 |
. . . 4
    TopSet   |
39 | 30, 38 | setsnid 15915 |
. . 3
         
        
                         sSet
 TopSet   unifTop      |
40 | 13, 14, 19, 21 | 2strop 15985 |
. . 3
 UnifOn 
                        |
41 | 27 | fveq2d 6195 |
. . 3
 UnifOn 
                          sSet
 TopSet   unifTop       |
42 | 39, 40, 41 | 3eqtr4a 2682 |
. 2
 UnifOn 
      |
43 | 27 | fveq2d 6195 |
. . . 4
 UnifOn 
TopSet  TopSet        
        
  sSet  TopSet   unifTop       |
44 | | prex 4909 |
. . . . 5
                   |
45 | | fvex 6201 |
. . . . 5
unifTop   |
46 | | tsetid 16041 |
. . . . . 6
TopSet Slot TopSet   |
47 | 46 | setsid 15914 |
. . . . 5
        
        
  unifTop   unifTop  TopSet        
        
  sSet  TopSet   unifTop       |
48 | 44, 45, 47 | mp2an 708 |
. . . 4
unifTop  TopSet        
        
  sSet  TopSet   unifTop      |
49 | 43, 48 | syl6reqr 2675 |
. . 3
 UnifOn 
unifTop  TopSet    |
50 | | utopbas 22039 |
. . . . . 6
 UnifOn 
 unifTop    |
51 | 49 | unieqd 4446 |
. . . . . 6
 UnifOn 
 unifTop   TopSet    |
52 | 50, 29, 51 | 3eqtr3rd 2665 |
. . . . 5
 UnifOn 
 TopSet        |
53 | 52 | oveq2d 6666 |
. . . 4
 UnifOn 
 TopSet 
↾t  TopSet    TopSet  ↾t        |
54 | | fvex 6201 |
. . . . 5
TopSet   |
55 | | eqid 2622 |
. . . . . 6
 TopSet   TopSet   |
56 | 55 | restid 16094 |
. . . . 5
 TopSet   TopSet  ↾t  TopSet   TopSet    |
57 | 54, 56 | ax-mp 5 |
. . . 4
 TopSet 
↾t  TopSet   TopSet   |
58 | | eqid 2622 |
. . . . 5
         |
59 | | eqid 2622 |
. . . . 5
TopSet  TopSet   |
60 | 58, 59 | topnval 16095 |
. . . 4
 TopSet 
↾t           |
61 | 53, 57, 60 | 3eqtr3g 2679 |
. . 3
 UnifOn 
TopSet        |
62 | 49, 61 | eqtrd 2656 |
. 2
 UnifOn 
unifTop        |
63 | 29, 42, 62 | 3jca 1242 |
1
 UnifOn 
    
    unifTop         |