MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.48-1 Structured version   Visualization version   Unicode version

Theorem tz7.48-1 7538
Description: Proposition 7.48(1) of [TakeutiZaring] p. 51. (Contributed by NM, 9-Feb-1997.)
Hypothesis
Ref Expression
tz7.48.1  |-  F  Fn  On
Assertion
Ref Expression
tz7.48-1  |-  ( A. x  e.  On  ( F `  x )  e.  ( A  \  ( F " x ) )  ->  ran  F  C_  A
)
Distinct variable groups:    x, F    x, A

Proof of Theorem tz7.48-1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . 5  |-  y  e. 
_V
21elrn2 5365 . . . 4  |-  ( y  e.  ran  F  <->  E. x <. x ,  y >.  e.  F )
3 vex 3203 . . . . . . . . 9  |-  x  e. 
_V
43, 1opeldm 5328 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  F  ->  x  e. 
dom  F )
5 tz7.48.1 . . . . . . . . 9  |-  F  Fn  On
6 fndm 5990 . . . . . . . . 9  |-  ( F  Fn  On  ->  dom  F  =  On )
75, 6ax-mp 5 . . . . . . . 8  |-  dom  F  =  On
84, 7syl6eleq 2711 . . . . . . 7  |-  ( <.
x ,  y >.  e.  F  ->  x  e.  On )
98ancri 575 . . . . . 6  |-  ( <.
x ,  y >.  e.  F  ->  ( x  e.  On  /\  <. x ,  y >.  e.  F
) )
10 fnopfvb 6237 . . . . . . . 8  |-  ( ( F  Fn  On  /\  x  e.  On )  ->  ( ( F `  x )  =  y  <->  <. x ,  y >.  e.  F ) )
115, 10mpan 706 . . . . . . 7  |-  ( x  e.  On  ->  (
( F `  x
)  =  y  <->  <. x ,  y >.  e.  F
) )
1211pm5.32i 669 . . . . . 6  |-  ( ( x  e.  On  /\  ( F `  x )  =  y )  <->  ( x  e.  On  /\  <. x ,  y >.  e.  F
) )
139, 12sylibr 224 . . . . 5  |-  ( <.
x ,  y >.  e.  F  ->  ( x  e.  On  /\  ( F `  x )  =  y ) )
1413eximi 1762 . . . 4  |-  ( E. x <. x ,  y
>.  e.  F  ->  E. x
( x  e.  On  /\  ( F `  x
)  =  y ) )
152, 14sylbi 207 . . 3  |-  ( y  e.  ran  F  ->  E. x ( x  e.  On  /\  ( F `
 x )  =  y ) )
16 nfra1 2941 . . . 4  |-  F/ x A. x  e.  On  ( F `  x )  e.  ( A  \ 
( F " x
) )
17 nfv 1843 . . . 4  |-  F/ x  y  e.  A
18 rsp 2929 . . . . 5  |-  ( A. x  e.  On  ( F `  x )  e.  ( A  \  ( F " x ) )  ->  ( x  e.  On  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) ) )
19 eldifi 3732 . . . . . . . 8  |-  ( ( F `  x )  e.  ( A  \ 
( F " x
) )  ->  ( F `  x )  e.  A )
20 eleq1 2689 . . . . . . . 8  |-  ( ( F `  x )  =  y  ->  (
( F `  x
)  e.  A  <->  y  e.  A ) )
2119, 20syl5ibcom 235 . . . . . . 7  |-  ( ( F `  x )  e.  ( A  \ 
( F " x
) )  ->  (
( F `  x
)  =  y  -> 
y  e.  A ) )
2221imim2i 16 . . . . . 6  |-  ( ( x  e.  On  ->  ( F `  x )  e.  ( A  \ 
( F " x
) ) )  -> 
( x  e.  On  ->  ( ( F `  x )  =  y  ->  y  e.  A
) ) )
2322impd 447 . . . . 5  |-  ( ( x  e.  On  ->  ( F `  x )  e.  ( A  \ 
( F " x
) ) )  -> 
( ( x  e.  On  /\  ( F `
 x )  =  y )  ->  y  e.  A ) )
2418, 23syl 17 . . . 4  |-  ( A. x  e.  On  ( F `  x )  e.  ( A  \  ( F " x ) )  ->  ( ( x  e.  On  /\  ( F `  x )  =  y )  -> 
y  e.  A ) )
2516, 17, 24exlimd 2087 . . 3  |-  ( A. x  e.  On  ( F `  x )  e.  ( A  \  ( F " x ) )  ->  ( E. x
( x  e.  On  /\  ( F `  x
)  =  y )  ->  y  e.  A
) )
2615, 25syl5 34 . 2  |-  ( A. x  e.  On  ( F `  x )  e.  ( A  \  ( F " x ) )  ->  ( y  e. 
ran  F  ->  y  e.  A ) )
2726ssrdv 3609 1  |-  ( A. x  e.  On  ( F `  x )  e.  ( A  \  ( F " x ) )  ->  ran  F  C_  A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912    \ cdif 3571    C_ wss 3574   <.cop 4183   dom cdm 5114   ran crn 5115   "cima 5117   Oncon0 5723    Fn wfn 5883   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  tz7.48-3  7539
  Copyright terms: Public domain W3C validator