| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tz7.48-2 | Structured version Visualization version Unicode version | ||
| Description: Proposition 7.48(2) of [TakeutiZaring] p. 51. (Contributed by NM, 9-Feb-1997.) (Revised by David Abernethy, 5-May-2013.) |
| Ref | Expression |
|---|---|
| tz7.48.1 |
|
| Ref | Expression |
|---|---|
| tz7.48-2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3624 |
. . 3
| |
| 2 | onelon 5748 |
. . . . . . . . 9
| |
| 3 | 2 | ancoms 469 |
. . . . . . . 8
|
| 4 | tz7.48.1 |
. . . . . . . . . . 11
| |
| 5 | fndm 5990 |
. . . . . . . . . . 11
| |
| 6 | 4, 5 | ax-mp 5 |
. . . . . . . . . 10
|
| 7 | 6 | eleq2i 2693 |
. . . . . . . . 9
|
| 8 | fnfun 5988 |
. . . . . . . . . . . . 13
| |
| 9 | 4, 8 | ax-mp 5 |
. . . . . . . . . . . 12
|
| 10 | funfvima 6492 |
. . . . . . . . . . . 12
| |
| 11 | 9, 10 | mpan 706 |
. . . . . . . . . . 11
|
| 12 | 11 | impcom 446 |
. . . . . . . . . 10
|
| 13 | eleq1a 2696 |
. . . . . . . . . . 11
| |
| 14 | eldifn 3733 |
. . . . . . . . . . 11
| |
| 15 | 13, 14 | nsyli 155 |
. . . . . . . . . 10
|
| 16 | 12, 15 | syl 17 |
. . . . . . . . 9
|
| 17 | 7, 16 | sylan2br 493 |
. . . . . . . 8
|
| 18 | 3, 17 | syldan 487 |
. . . . . . 7
|
| 19 | 18 | expimpd 629 |
. . . . . 6
|
| 20 | 19 | com12 32 |
. . . . 5
|
| 21 | 20 | ralrimiv 2965 |
. . . 4
|
| 22 | 21 | ralimiaa 2951 |
. . 3
|
| 23 | 4 | tz7.48lem 7536 |
. . 3
|
| 24 | 1, 22, 23 | sylancr 695 |
. 2
|
| 25 | fnrel 5989 |
. . . . . 6
| |
| 26 | 4, 25 | ax-mp 5 |
. . . . 5
|
| 27 | 6 | eqimssi 3659 |
. . . . 5
|
| 28 | relssres 5437 |
. . . . 5
| |
| 29 | 26, 27, 28 | mp2an 708 |
. . . 4
|
| 30 | 29 | cnveqi 5297 |
. . 3
|
| 31 | 30 | funeqi 5909 |
. 2
|
| 32 | 24, 31 | sylib 208 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fv 5896 |
| This theorem is referenced by: tz7.48-3 7539 |
| Copyright terms: Public domain | W3C validator |