MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uc1pval Structured version   Visualization version   Unicode version

Theorem uc1pval 23899
Description: Value of the set of unitic polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
uc1pval.p  |-  P  =  (Poly1 `  R )
uc1pval.b  |-  B  =  ( Base `  P
)
uc1pval.z  |-  .0.  =  ( 0g `  P )
uc1pval.d  |-  D  =  ( deg1  `  R )
uc1pval.c  |-  C  =  (Unic1p `  R )
uc1pval.u  |-  U  =  (Unit `  R )
Assertion
Ref Expression
uc1pval  |-  C  =  { f  e.  B  |  ( f  =/= 
.0.  /\  ( (coe1 `  f ) `  ( D `  f )
)  e.  U ) }
Distinct variable groups:    B, f    D, f    R, f    U, f    .0. , f
Allowed substitution hints:    C( f)    P( f)

Proof of Theorem uc1pval
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 uc1pval.c . 2  |-  C  =  (Unic1p `  R )
2 fveq2 6191 . . . . . . . 8  |-  ( r  =  R  ->  (Poly1 `  r )  =  (Poly1 `  R ) )
3 uc1pval.p . . . . . . . 8  |-  P  =  (Poly1 `  R )
42, 3syl6eqr 2674 . . . . . . 7  |-  ( r  =  R  ->  (Poly1 `  r )  =  P )
54fveq2d 6195 . . . . . 6  |-  ( r  =  R  ->  ( Base `  (Poly1 `  r ) )  =  ( Base `  P
) )
6 uc1pval.b . . . . . 6  |-  B  =  ( Base `  P
)
75, 6syl6eqr 2674 . . . . 5  |-  ( r  =  R  ->  ( Base `  (Poly1 `  r ) )  =  B )
84fveq2d 6195 . . . . . . . 8  |-  ( r  =  R  ->  ( 0g `  (Poly1 `  r ) )  =  ( 0g `  P ) )
9 uc1pval.z . . . . . . . 8  |-  .0.  =  ( 0g `  P )
108, 9syl6eqr 2674 . . . . . . 7  |-  ( r  =  R  ->  ( 0g `  (Poly1 `  r ) )  =  .0.  )
1110neeq2d 2854 . . . . . 6  |-  ( r  =  R  ->  (
f  =/=  ( 0g
`  (Poly1 `  r ) )  <-> 
f  =/=  .0.  )
)
12 fveq2 6191 . . . . . . . . . 10  |-  ( r  =  R  ->  ( deg1  `  r )  =  ( deg1  `  R ) )
13 uc1pval.d . . . . . . . . . 10  |-  D  =  ( deg1  `  R )
1412, 13syl6eqr 2674 . . . . . . . . 9  |-  ( r  =  R  ->  ( deg1  `  r )  =  D )
1514fveq1d 6193 . . . . . . . 8  |-  ( r  =  R  ->  (
( deg1  `
 r ) `  f )  =  ( D `  f ) )
1615fveq2d 6195 . . . . . . 7  |-  ( r  =  R  ->  (
(coe1 `  f ) `  ( ( deg1  `  r ) `  f ) )  =  ( (coe1 `  f ) `  ( D `  f ) ) )
17 fveq2 6191 . . . . . . . 8  |-  ( r  =  R  ->  (Unit `  r )  =  (Unit `  R ) )
18 uc1pval.u . . . . . . . 8  |-  U  =  (Unit `  R )
1917, 18syl6eqr 2674 . . . . . . 7  |-  ( r  =  R  ->  (Unit `  r )  =  U )
2016, 19eleq12d 2695 . . . . . 6  |-  ( r  =  R  ->  (
( (coe1 `  f ) `  ( ( deg1  `  r ) `  f ) )  e.  (Unit `  r )  <->  ( (coe1 `  f ) `  ( D `  f ) )  e.  U ) )
2111, 20anbi12d 747 . . . . 5  |-  ( r  =  R  ->  (
( f  =/=  ( 0g `  (Poly1 `  r ) )  /\  ( (coe1 `  f
) `  ( ( deg1  `  r ) `  f
) )  e.  (Unit `  r ) )  <->  ( f  =/=  .0.  /\  ( (coe1 `  f ) `  ( D `  f )
)  e.  U ) ) )
227, 21rabeqbidv 3195 . . . 4  |-  ( r  =  R  ->  { f  e.  ( Base `  (Poly1 `  r ) )  |  ( f  =/=  ( 0g `  (Poly1 `  r ) )  /\  ( (coe1 `  f
) `  ( ( deg1  `  r ) `  f
) )  e.  (Unit `  r ) ) }  =  { f  e.  B  |  ( f  =/=  .0.  /\  (
(coe1 `  f ) `  ( D `  f ) )  e.  U ) } )
23 df-uc1p 23891 . . . 4  |- Unic1p  =  ( r  e.  _V  |->  { f  e.  ( Base `  (Poly1 `  r ) )  |  ( f  =/=  ( 0g `  (Poly1 `  r ) )  /\  ( (coe1 `  f
) `  ( ( deg1  `  r ) `  f
) )  e.  (Unit `  r ) ) } )
24 fvex 6201 . . . . . 6  |-  ( Base `  P )  e.  _V
256, 24eqeltri 2697 . . . . 5  |-  B  e. 
_V
2625rabex 4813 . . . 4  |-  { f  e.  B  |  ( f  =/=  .0.  /\  ( (coe1 `  f ) `  ( D `  f ) )  e.  U ) }  e.  _V
2722, 23, 26fvmpt 6282 . . 3  |-  ( R  e.  _V  ->  (Unic1p `  R )  =  {
f  e.  B  | 
( f  =/=  .0.  /\  ( (coe1 `  f ) `  ( D `  f ) )  e.  U ) } )
28 fvprc 6185 . . . 4  |-  ( -.  R  e.  _V  ->  (Unic1p `  R )  =  (/) )
29 ssrab2 3687 . . . . . 6  |-  { f  e.  B  |  ( f  =/=  .0.  /\  ( (coe1 `  f ) `  ( D `  f ) )  e.  U ) }  C_  B
30 fvprc 6185 . . . . . . . . . 10  |-  ( -.  R  e.  _V  ->  (Poly1 `  R )  =  (/) )
313, 30syl5eq 2668 . . . . . . . . 9  |-  ( -.  R  e.  _V  ->  P  =  (/) )
3231fveq2d 6195 . . . . . . . 8  |-  ( -.  R  e.  _V  ->  (
Base `  P )  =  ( Base `  (/) ) )
33 base0 15912 . . . . . . . 8  |-  (/)  =  (
Base `  (/) )
3432, 33syl6eqr 2674 . . . . . . 7  |-  ( -.  R  e.  _V  ->  (
Base `  P )  =  (/) )
356, 34syl5eq 2668 . . . . . 6  |-  ( -.  R  e.  _V  ->  B  =  (/) )
3629, 35syl5sseq 3653 . . . . 5  |-  ( -.  R  e.  _V  ->  { f  e.  B  | 
( f  =/=  .0.  /\  ( (coe1 `  f ) `  ( D `  f ) )  e.  U ) }  C_  (/) )
37 ss0 3974 . . . . 5  |-  ( { f  e.  B  | 
( f  =/=  .0.  /\  ( (coe1 `  f ) `  ( D `  f ) )  e.  U ) }  C_  (/)  ->  { f  e.  B  |  ( f  =/=  .0.  /\  ( (coe1 `  f ) `  ( D `  f ) )  e.  U ) }  =  (/) )
3836, 37syl 17 . . . 4  |-  ( -.  R  e.  _V  ->  { f  e.  B  | 
( f  =/=  .0.  /\  ( (coe1 `  f ) `  ( D `  f ) )  e.  U ) }  =  (/) )
3928, 38eqtr4d 2659 . . 3  |-  ( -.  R  e.  _V  ->  (Unic1p `  R )  =  {
f  e.  B  | 
( f  =/=  .0.  /\  ( (coe1 `  f ) `  ( D `  f ) )  e.  U ) } )
4027, 39pm2.61i 176 . 2  |-  (Unic1p `  R
)  =  { f  e.  B  |  ( f  =/=  .0.  /\  ( (coe1 `  f ) `  ( D `  f ) )  e.  U ) }
411, 40eqtri 2644 1  |-  C  =  { f  e.  B  |  ( f  =/= 
.0.  /\  ( (coe1 `  f ) `  ( D `  f )
)  e.  U ) }
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ` cfv 5888   Basecbs 15857   0gc0g 16100  Unitcui 18639  Poly1cpl1 19547  coe1cco1 19548   deg1 cdg1 23814  Unic1pcuc1p 23886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-slot 15861  df-base 15863  df-uc1p 23891
This theorem is referenced by:  isuc1p  23900
  Copyright terms: Public domain W3C validator